Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Strength of Materials 2/2022

13.06.2022 | SCIENTIFIC AND TECHNICAL SECTION

Modified Elastic Solution Processes and Interchangeable Elasticity Parameters in the Problems of Radiation Creep

verfasst von: O. Yu. Chirkov

Erschienen in: Strength of Materials | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Methods of elastic solutions and interchangeable elasticity parameters for solving nonlinear boundary value problems of mechanics are considered, making it possible to describe non-isothermal processes of inelastic deformation with account of radiation swelling deformations and radiation creep of irradiated material. For modeling the processes of radiation swelling and radiation creep, modern approaches are used, which take into account the damaging dose, irradiation temperature, and the effect of the stress state on the material swelling and creep. Generalized and modified methods of elastic solutions and interchangeable elasticity parameters are investigated and applied to the solution of nonlinear boundary value problems of radiation creep. It is taken into account that the construction and investigation of the properties of iterative methods for solving the equations of radiation creep is complicated due to the fact that, in order to prove the convergence and estimate the accuracy of successive approximations, it is necessary to consider a rather rigid restriction due to the asymmetry of the operator, which relates the errors of the iteration process for two successive approximations. Under such conditions, traditional approaches to investigating the convergence of elastic solution methods and interchangeable elasticity parameters taking into account the properties of self-adjoint operators will prove to be unacceptable. In addition, the standard equation symmetrization procedure for successive approximations leads to excessively conservative estimates of the convergence of iterative processes, and therefore the optimization of their convergence rate has a rather approximate character. This problem is decoupled through a thorough study of the properties of the constitutive equations of radiation creep and the application of a special norm to the analysis of the convergence of successive approximations, which made it possible to construct modified iterative processes and prove the local convergence of elastic solution methods and interchangeable elasticity parameters for the general case of radiation creep equations. The properties of nonlinear operators of generalized and modified processes are studied in detail. On this basis, a priori estimates of the convergence rate of iterative methods for different models of compressed swelling are obtained. Using the obtained a priori estimates, optimization approaches for modified methods of elastic solutions and interchangeable elasticity parameters for solving nonlinear problems of radiation creep have been formulated.
Literatur
3.
Zurück zum Zitat O. Yu. Chirkov, “Analysis of irradiation swelling and irradiation creep models with the stress effect account in the problems of inelastic strain mechanics. Part 3. Taking into account accumulated irreversible strain in the irradiation swelling model,” Strength Mater., 53, No. 5, 691–698 (2021), https://​doi.​org/​10.​1007/​s11223-021-00333-8. CrossRef O. Yu. Chirkov, “Analysis of irradiation swelling and irradiation creep models with the stress effect account in the problems of inelastic strain mechanics. Part 3. Taking into account accumulated irreversible strain in the irradiation swelling model,” Strength Mater., 53, No. 5, 691–698 (2021), https://​doi.​org/​10.​1007/​s11223-021-00333-8. CrossRef
5.
Zurück zum Zitat N. K. Vasina, B. Z. Margolin, A. G. Gulenko, and I. P. Kursevich, “Radiation swelling of austenitic steels. effect of various factors, processing of experimental data and formulation of basic equations,” Vopr. Materialoved., No. 4 (48), 69–88 (2006). N. K. Vasina, B. Z. Margolin, A. G. Gulenko, and I. P. Kursevich, “Radiation swelling of austenitic steels. effect of various factors, processing of experimental data and formulation of basic equations,” Vopr. Materialoved., No. 4 (48), 69–88 (2006).
6.
Zurück zum Zitat A. A. Ilyushin, Plasticity [in Russian], Gostekhizdat, Moscow (1948). A. A. Ilyushin, Plasticity [in Russian], Gostekhizdat, Moscow (1948).
7.
Zurück zum Zitat I. A. Birger, “Some general methods for solving problems of the theory of plasticity,” Prikl. Matem. Mekh., 15, No. 6, 765–770 (1951). I. A. Birger, “Some general methods for solving problems of the theory of plasticity,” Prikl. Matem. Mekh., 15, No. 6, 765–770 (1951).
8.
Zurück zum Zitat I. I. Vorovich and Yu. P. Krasovskii, “On the method of elastic solutions,” Dokl. AN SSSR, 126, No. 4, 118–121 (1959). I. I. Vorovich and Yu. P. Krasovskii, “On the method of elastic solutions,” Dokl. AN SSSR, 126, No. 4, 118–121 (1959).
9.
Zurück zum Zitat V. S. Lenskii and G. L. Brovko, “Method of homogeneous linear approximations in unbounded problems of thermoradiative elasticity and plasticity,” in: Heat Stresses in Elements of Structures [in Russian], Issue 11, Naukova Dumka, Kiev (1971), pp. 100–103. V. S. Lenskii and G. L. Brovko, “Method of homogeneous linear approximations in unbounded problems of thermoradiative elasticity and plasticity,” in: Heat Stresses in Elements of Structures [in Russian], Issue 11, Naukova Dumka, Kiev (1971), pp. 100–103.
10.
Zurück zum Zitat D. L. Bykov, “On some methods for solving problems in plasticity theory,” in: Elasticity and Inelasticity [in Russian], Issue 4, Moscow State University, Moscow (1975), pp. 119–149. D. L. Bykov, “On some methods for solving problems in plasticity theory,” in: Elasticity and Inelasticity [in Russian], Issue 4, Moscow State University, Moscow (1975), pp. 119–149.
11.
Zurück zum Zitat S. E. Umanskii, “On the convergence of the method of variable parameters of elasticity,” Prikl. Matem. Mekh., No. 3, 577–581 (1980). S. E. Umanskii, “On the convergence of the method of variable parameters of elasticity,” Prikl. Matem. Mekh., No. 3, 577–581 (1980).
12.
Zurück zum Zitat Yu. M. Temis, “Convergence of the method of variable parameters of elasticity in the numerical solution of plasticity problems by the finite element method,” in: Applied Problems of Strength and Plasticity: Statics and Dynamics of Deformable Systems [in Russian], Nauka, Moscow (1982), pp. 21–34. Yu. M. Temis, “Convergence of the method of variable parameters of elasticity in the numerical solution of plasticity problems by the finite element method,” in: Applied Problems of Strength and Plasticity: Statics and Dynamics of Deformable Systems [in Russian], Nauka, Moscow (1982), pp. 21–34.
13.
Zurück zum Zitat J. M. Ortega and W. C. Rheinboldt, Iterative Solution if Nonlinear Equations in Several Variables, Academic Press, New York–London (1970). J. M. Ortega and W. C. Rheinboldt, Iterative Solution if Nonlinear Equations in Several Variables, Academic Press, New York–London (1970).
14.
Zurück zum Zitat V. P. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasi-Linear Equations of Elliptic Type [in Russian], Nauka, Moscow (1973). V. P. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasi-Linear Equations of Elliptic Type [in Russian], Nauka, Moscow (1973).
15.
Zurück zum Zitat S. G. Mikhlin, Variation Methods in Mathematical Physics [in Russian], Nauka, Moscow (1970). S. G. Mikhlin, Variation Methods in Mathematical Physics [in Russian], Nauka, Moscow (1970).
16.
Zurück zum Zitat A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1981). A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1981).
17.
Zurück zum Zitat O. Yu. Chirkov, Radiation Creep in Problems of Mechanics of Inelastic Deformation of Materials and Structural Elements [in Ukrainian], Pisarenko Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev (2020). O. Yu. Chirkov, Radiation Creep in Problems of Mechanics of Inelastic Deformation of Materials and Structural Elements [in Ukrainian], Pisarenko Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev (2020).
18.
Zurück zum Zitat H. Gaevsky, K. Greger, K. Zaharias, Nonlinear Operator Equations and Operator Differential Equations, Mir, Moscow (1978). H. Gaevsky, K. Greger, K. Zaharias, Nonlinear Operator Equations and Operator Differential Equations, Mir, Moscow (1978).
Metadaten
Titel
Modified Elastic Solution Processes and Interchangeable Elasticity Parameters in the Problems of Radiation Creep
verfasst von
O. Yu. Chirkov
Publikationsdatum
13.06.2022
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 2/2022
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-022-00391-6

Weitere Artikel der Ausgabe 2/2022

Strength of Materials 2/2022 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.