Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

17.02.2018

Modified Genetic Algorithm (MGA) based feature selection with Mean Weighted Least Squares Twin Support Vector Machine (MW-LSTSVM) approach for vegetation classification

Zeitschrift:
Cluster Computing
Autoren:
V. Shenbaga Priya, D. Ramyachitra

Abstract

Vegetation classification using remotely sensed images is an advancing approach predominantly in area developmental schemes. It is very common that the same vegetation type on ground may have different spectral features in remotely sensed images. Also, different vegetation types may possess similar spectra, which makes very hard to obtain accurate classification results. In the recent work, there are number of classifiers that are proposed by different researchers to solve this problem. Though many solutions are available, high dimensionality of samples become a major issue. The prime objective of this work is to increase the classification efficiency of agricultural area. This research presents a novel object identification and feature selection algorithm. At the initial stage of the work, Modified Fuzzy Possibilistic C-Means clustering is applied for the proficient segmentation of objects. In addition texture and the spectral features of the segmented image are extracted for efficient vegetation classification and these features are selected based on the Modified Genetic Algorithm based wrapper feature selection algorithm. Finally, vegetation classification is performed by using Mean Weight-Least Squares Twin Support Vector Machine (MW-LSTSVM). Thus the vegetation classification is achieved accurately. The experimentation results prove that the MW-LSTSVM provides higher values in regard to accuracy, recall, precision and F-measure justifying its efficiency. MW-LSTSVM efficiently improves the classification of remotely sensed images in an agricultural area when compared to existing classifiers.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise