Skip to main content
Erschienen in:

11.02.2024

Modified Model of RLS Adaptive Filter for Noise Cancellation

verfasst von: Nilesh Kumar Yadav, Amit Dhawan, Manish Tiwari, Sumit Kumar Jha

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recursive Least Square (RLS) is a popular algorithm for noise cancellation in non-stationary signals; however, it demands more computational resources and more difficult mathematical operations. Also, RLS has less performance stability. The present research explores a novel idea of an RLS adaptive noise cancellation through a modified method that uses an RLS adaptive filter by introducing an additional constant multiplier, along with their in-depth analysis. The proposed algorithm is analyzed using three primary performance metrics: mean square error (MSE), signal-to-noise ratio (SNR), and convergence rate. The obtained results demonstrate that the proposed algorithm has reduced the MSE by 79.65%, which leads to an improvement in SNR by 86.16% compared to the traditional RLS algorithm. The additional constant multiplier is optimized for SNR, and the optimized value is found to be equal to 0.65, which gives the best possible SNR value of 19.38 dB. Also, the proposed algorithm has been successfully applied to a real-world scenario in acoustic echo cancellation (AEC). The experimental setup for the echo canceller is simulated on MATLAB to measure the echo canceller efficiency in terms of MSE and echo return loss enhancement. Based on performance evaluation, the proposed algorithm has been found to better echo cancellation in AEC as compared to traditional RLS.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat F. Akingbade, I. Alimi, Acoustic echo cancellation using modified normalized least mean square adaptive filters. Int. J. Sci. Eng. Res. 5(5), 1175–1179 (2014) F. Akingbade, I. Alimi, Acoustic echo cancellation using modified normalized least mean square adaptive filters. Int. J. Sci. Eng. Res. 5(5), 1175–1179 (2014)
5.
Zurück zum Zitat K.R. Borisagar, G.R. Kulkarni, Simulation and comparative analysis of LMS and RLS algorithms using real time speech input signal. Glob. J. Res. Eng. 10(5), 44–47 (2010) K.R. Borisagar, G.R. Kulkarni, Simulation and comparative analysis of LMS and RLS algorithms using real time speech input signal. Glob. J. Res. Eng. 10(5), 44–47 (2010)
7.
Zurück zum Zitat J. Chhikara, J. Singh, Noise cancellation using adaptive algorithms. Int. J. Mod. Eng. Res. (IJMER) 2(3), 792–795 (2020) J. Chhikara, J. Singh, Noise cancellation using adaptive algorithms. Int. J. Mod. Eng. Res. (IJMER) 2(3), 792–795 (2020)
11.
21.
22.
Zurück zum Zitat S.S. Haykin, Adaptive Filter Theory (Pearson Education India, Bangalore, 2008) S.S. Haykin, Adaptive Filter Theory (Pearson Education India, Bangalore, 2008)
26.
Zurück zum Zitat N. Kalouptsidis, S. Theodoridis, Adaptive system identification and signal processing algorithms (Prentice-Hall Inc, Upper Saddle River, 1993) N. Kalouptsidis, S. Theodoridis, Adaptive system identification and signal processing algorithms (Prentice-Hall Inc, Upper Saddle River, 1993)
28.
32.
41.
42.
Zurück zum Zitat R.K. Thenua, S.K. Agarwal, Simulation and performance analysis of adaptive filter in noise cancellation. Int. J. Eng. Sci. Technol. 2(9), 4373–4378 (2010) R.K. Thenua, S.K. Agarwal, Simulation and performance analysis of adaptive filter in noise cancellation. Int. J. Eng. Sci. Technol. 2(9), 4373–4378 (2010)
44.
Zurück zum Zitat B. Widrow, R.E. Kalman, N. DeClaris, Adaptive Filters-Aspects of Network and System Theory (Holt Rinehart and Winston, New York, 1971), pp.563–586 B. Widrow, R.E. Kalman, N. DeClaris, Adaptive Filters-Aspects of Network and System Theory (Holt Rinehart and Winston, New York, 1971), pp.563–586
Metadaten
Titel
Modified Model of RLS Adaptive Filter for Noise Cancellation
verfasst von
Nilesh Kumar Yadav
Amit Dhawan
Manish Tiwari
Sumit Kumar Jha
Publikationsdatum
11.02.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 5/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02605-5