Skip to main content

2020 | OriginalPaper | Buchkapitel

Modified Multinomial Naïve Bayes Algorithm for Heart Disease Prediction

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There are number of challenging research areas available in the field of medical technologies. Among them cardio-vascular disease prediction plays a vital role. By applying data mining techniques, valuable knowledge can be extracted from the health care system. In this proposed work heart disease can be detected by using a classifier algorithm. The world health organization has projected 17.7 million people died from CVDs in 2015, representing 31% of all global deaths. According to this survey, it is anticipated that nearly 7.4 million people will die due to coronary heart disease and 6.7 million were due to stroke. The proposed algorithm was Modified Multinomial Naïve Bayes algorithms (MMNB). This algorithm helps us to predict the heart disease more accurately compared to other supervised algorithm. The proposed algorithm provides 74.8% of accuracy which is better than the Naïve Bayes Algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dhomse Kanchan, B., Mahale Kishor, M.: Study of machine learning algorithms for special disease prediction using principal of component analysis. In: Proceedings of IEEE Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC) (2016) Dhomse Kanchan, B., Mahale Kishor, M.: Study of machine learning algorithms for special disease prediction using principal of component analysis. In: Proceedings of IEEE Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC) (2016)
2.
Zurück zum Zitat Gudadhe, M., Wankhade, K., Dongre, S.: Decision support system for heart disease based on support vector machine and artificial neural network. In: Proceedings of International Conference on Computer and Communication Technology (ICCCT), pp. 741–745 (2010) Gudadhe, M., Wankhade, K., Dongre, S.: Decision support system for heart disease based on support vector machine and artificial neural network. In: Proceedings of International Conference on Computer and Communication Technology (ICCCT), pp. 741–745 (2010)
3.
Zurück zum Zitat Singh, P., Singh, S., Pandi-Jain, G.S.: Effective heart disease prediction system using data mining techniques. Int. J. Nano Med. 13, 121–124 (2018)CrossRef Singh, P., Singh, S., Pandi-Jain, G.S.: Effective heart disease prediction system using data mining techniques. Int. J. Nano Med. 13, 121–124 (2018)CrossRef
4.
Zurück zum Zitat Sayad, A.T., Halkarnikar, P.P.: Diagnosis of heart disease using neural network approach. In: International Journal of Advance Science of Engineering Technology, vol. 2, pp. 88–92 (2014). ISSN 2321-9009 Sayad, A.T., Halkarnikar, P.P.: Diagnosis of heart disease using neural network approach. In: International Journal of Advance Science of Engineering Technology, vol. 2, pp. 88–92 (2014). ISSN 2321-9009
5.
Zurück zum Zitat Bangi, S., Gadakh, P., Gaikwad, P., Rajpure, P.: Survey paper on prediction of heart disease using data mining technique. Int. J. Recent Trends Eng. Res. (IJRTER) 02(03), 21–24 (2016) Bangi, S., Gadakh, P., Gaikwad, P., Rajpure, P.: Survey paper on prediction of heart disease using data mining technique. Int. J. Recent Trends Eng. Res. (IJRTER) 02(03), 21–24 (2016)
6.
Zurück zum Zitat World Health Organisation (WHO) Report on Cardiovascular Disease (CVDs), Fact Sheet (2016) World Health Organisation (WHO) Report on Cardiovascular Disease (CVDs), Fact Sheet (2016)
7.
Zurück zum Zitat Rajkumar, A., Sophia Reena, G.: Diagnosis of heart disease using data mining algorithms. Glob. J. Comput. Sci. Technol. 10(10), 38–43 (2010) Rajkumar, A., Sophia Reena, G.: Diagnosis of heart disease using data mining algorithms. Glob. J. Comput. Sci. Technol. 10(10), 38–43 (2010)
8.
Zurück zum Zitat Florence, S., Bhuvaneswari Amma, N.G., Annapoorani, G., Malathi, K.: Predicting the risk of heart attacks using neural network and decision tree. Int. J. Innovative Res. Comput. Commun. Eng. 2(11), 7025–7028 (2014). ISSN (Online) 2320-9801 Florence, S., Bhuvaneswari Amma, N.G., Annapoorani, G., Malathi, K.: Predicting the risk of heart attacks using neural network and decision tree. Int. J. Innovative Res. Comput. Commun. Eng. 2(11), 7025–7028 (2014). ISSN (Online) 2320-9801
9.
Zurück zum Zitat Purusothaman, G., Krishnakumari, P.: A survey of data mining techniques on risk prediction: heart disease. Indian J. Sci. Technol. 8(12), 1–5 (2015)CrossRef Purusothaman, G., Krishnakumari, P.: A survey of data mining techniques on risk prediction: heart disease. Indian J. Sci. Technol. 8(12), 1–5 (2015)CrossRef
10.
Zurück zum Zitat Cherian, V., Bindu, M.S.: Heart disease prediction using Naïve Bayes algorithm and Laplace smoothing technique. Int. J. Comput. Sci. Trends Technol. (IJCST) 5(2), 68–73 (2017) Cherian, V., Bindu, M.S.: Heart disease prediction using Naïve Bayes algorithm and Laplace smoothing technique. Int. J. Comput. Sci. Trends Technol. (IJCST) 5(2), 68–73 (2017)
11.
Zurück zum Zitat Santhanam, T., Ephzibah, E.P.: Heart disease classification using PCA and feed forward neural networks. In: Proceedings of First International Conference, Mining Intelligence and Knowledge Exploration (MIKE), Part of Lecture Note in Artificial Intelligence (LNAI), vol. 8284, pp. 90–99 (2013)CrossRef Santhanam, T., Ephzibah, E.P.: Heart disease classification using PCA and feed forward neural networks. In: Proceedings of First International Conference, Mining Intelligence and Knowledge Exploration (MIKE), Part of Lecture Note in Artificial Intelligence (LNAI), vol. 8284, pp. 90–99 (2013)CrossRef
12.
Zurück zum Zitat Tomar, D., Agarwal, S.: A survey on data mining approaches for healthcare. Int. J. Bio-Sci. Bio-Technol. 5, 241–266 (2013)CrossRef Tomar, D., Agarwal, S.: A survey on data mining approaches for healthcare. Int. J. Bio-Sci. Bio-Technol. 5, 241–266 (2013)CrossRef
Metadaten
Titel
Modified Multinomial Naïve Bayes Algorithm for Heart Disease Prediction
verfasst von
T. Marikani
K. Shyamala
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-28364-3_27