Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.07.2013 | Original Article | Ausgabe 1/2013

Neural Computing and Applications 1/2013

Modular neural-SVM scheme for speech emotion recognition using ANOVA feature selection method

Zeitschrift:
Neural Computing and Applications > Ausgabe 1/2013
Autoren:
Mansour Sheikhan, Mahdi Bejani, Davood Gharavian

Abstract

The speech signal consists of linguistic information and also paralinguistic one such as emotion. The modern automatic speech recognition systems have achieved high performance in neutral style speech recognition, but they cannot maintain their high recognition rate for spontaneous speech. So, emotion recognition is an important step toward emotional speech recognition. The accuracy of an emotion recognition system is dependent on different factors such as the type and number of emotional states and selected features, and also the type of classifier. In this paper, a modular neural-support vector machine (SVM) classifier is proposed, and its performance in emotion recognition is compared to Gaussian mixture model, multi-layer perceptron neural network, and C5.0-based classifiers. The most efficient features are also selected by using the analysis of variations method. It is noted that the proposed modular scheme is achieved through a comparative study of different features and characteristics of an individual emotional state with the aim of improving the recognition performance. Empirical results show that even by discarding 22% of features, the average emotion recognition accuracy can be improved by 2.2%. Also, the proposed modular neural-SVM classifier improves the recognition accuracy at least by 8% as compared to the simulated monolithic classifiers.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2013

Neural Computing and Applications 1/2013 Zur Ausgabe

Premium Partner

    Bildnachweise