Skip to main content
Erschienen in: Experimental Mechanics 7/2016

28.04.2016

Moduli Determination at Different Temperatures by an Ultrasonic Waveguide Method

verfasst von: S. Periyannan, K. Balasubramaniam

Erschienen in: Experimental Mechanics | Ausgabe 7/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel ultrasonic waveguide based technique for measuring the moduli of elastic isotropic material as a function of temperature using ultrasonic guided wave modes is presented here. This technique can be utilized for measuring Young’s modulus (E) and Shear Modulus (G) of multiple material using the guided ultrasonic L(0, 1) and T(0, 1) wave modes respectively over a wide range of temperatures (demonstrated here from room temperature to 1200 °C). The specimens used in the experiments here have special embodiments (for instance, a bend) at one end of the waveguide and an ultrasonic guided wave generator (transducer) at the other end for obtaining reflected signals in a pulse-echo mode. The far end of the waveguides with the embodiment is kept inside a heating device such as a temperature-controlled furnace. The time of flight difference (δTOF) were used to measure the moduli at different temperatures. Several materials were tested and the comparison between literature values and measured values were found to be in agreement, for both elastic moduli (E and G) measurements, as a function of temperature. This technique provides significant reduction in time, effort and cost over conventional means of measurement of temperature dependence of elastic moduli.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat McLellan RB, Ishikawa T (1987) The elastic properties of aluminum at high temperatures. J Phys Chem Solid 48(7):603–606CrossRef McLellan RB, Ishikawa T (1987) The elastic properties of aluminum at high temperatures. J Phys Chem Solid 48(7):603–606CrossRef
2.
Zurück zum Zitat Ufuah E (2012) Characterization of elevated temperature mechanical properties of butt-welded connections made with HS Steel Grade S420M. Proceedings of the World Congress on Engineering Vol III, WCE 2012, London, U.K Ufuah E (2012) Characterization of elevated temperature mechanical properties of butt-welded connections made with HS Steel Grade S420M. Proceedings of the World Congress on Engineering Vol III, WCE 2012, London, U.K
3.
Zurück zum Zitat Outinen J, Kaitila O, Makelainen P et al. (2000) A study for the development of the design of steel structures in fire conditions. 1st International Workshop of Structures in Fire, Copenhagen, Denmark Outinen J, Kaitila O, Makelainen P et al. (2000) A study for the development of the design of steel structures in fire conditions. 1st International Workshop of Structures in Fire, Copenhagen, Denmark
4.
Zurück zum Zitat Kumaran SM, Rajendran V, Jayakumar T, Palanichamy P, Shankar P, Raj B (2008) First differential of temperature dependent ultrasonic parameters as an effective tool for identifying precipitation reactions in a slow heat-treated 8090 Al–Li alloy. J Alloys Compd 464:150–156CrossRef Kumaran SM, Rajendran V, Jayakumar T, Palanichamy P, Shankar P, Raj B (2008) First differential of temperature dependent ultrasonic parameters as an effective tool for identifying precipitation reactions in a slow heat-treated 8090 Al–Li alloy. J Alloys Compd 464:150–156CrossRef
5.
Zurück zum Zitat Bourgeois L, Nadal MH, Clement F, Chapuis GR (2007) Determination of elastic moduli at high temperatures for uranium–vanadium alloy and pure plutonium by an ultrasonic method. J Alloys Compd 444–445:261–264CrossRef Bourgeois L, Nadal MH, Clement F, Chapuis GR (2007) Determination of elastic moduli at high temperatures for uranium–vanadium alloy and pure plutonium by an ultrasonic method. J Alloys Compd 444–445:261–264CrossRef
6.
Zurück zum Zitat Sather A (1968) Ultrasonic buffer rod technique for the high temperature measurement of the elastic moduli of the short specimens. J Acoustic Soc Am 43:1291–1294CrossRef Sather A (1968) Ultrasonic buffer rod technique for the high temperature measurement of the elastic moduli of the short specimens. J Acoustic Soc Am 43:1291–1294CrossRef
7.
Zurück zum Zitat Schreiber E, Anderson OL, Soga N (1973) Elastic constants and their measurement. McGraw-Hill, New York Schreiber E, Anderson OL, Soga N (1973) Elastic constants and their measurement. McGraw-Hill, New York
8.
Zurück zum Zitat Nadal MH, Hubert C, Ravel-Chapuis G (2007) Shear modulus determination versus temperature up to the melting point using a laser-ultrasonic device. J Alloys Compd 444–445:265–267CrossRef Nadal MH, Hubert C, Ravel-Chapuis G (2007) Shear modulus determination versus temperature up to the melting point using a laser-ultrasonic device. J Alloys Compd 444–445:265–267CrossRef
9.
Zurück zum Zitat Lim RS, Kruger SE, Lamouche G, Marple BR (2005) Elastic modulus measurements via laser-ultrasonic and knoop indentation techniques in thermally sprayed coatings. Thermal Spray Technol 14:52–60CrossRef Lim RS, Kruger SE, Lamouche G, Marple BR (2005) Elastic modulus measurements via laser-ultrasonic and knoop indentation techniques in thermally sprayed coatings. Thermal Spray Technol 14:52–60CrossRef
10.
Zurück zum Zitat Brammer JA, Percival CM (1970) Elevated-temperature elastic moduli of 2024 aluminum obtained by a laser-pulse technique. Experiment Mech 10(6):245–250CrossRef Brammer JA, Percival CM (1970) Elevated-temperature elastic moduli of 2024 aluminum obtained by a laser-pulse technique. Experiment Mech 10(6):245–250CrossRef
11.
Zurück zum Zitat Bao Y, Zhang H, Ahmadi M, Karim MA, Wu HF (2014) Measurements of Young’s and shear moduli of rail steel at elevated temperatures. Ultrasonics 54(3):867–873CrossRef Bao Y, Zhang H, Ahmadi M, Karim MA, Wu HF (2014) Measurements of Young’s and shear moduli of rail steel at elevated temperatures. Ultrasonics 54(3):867–873CrossRef
12.
Zurück zum Zitat Cook LS, Wolfenden A, Ludtka GM (1990) Dynamic elastic modulus measurements in materials. Copy Right ASTM, STP 1045:81–95 Cook LS, Wolfenden A, Ludtka GM (1990) Dynamic elastic modulus measurements in materials. Copy Right ASTM, STP 1045:81–95
13.
Zurück zum Zitat Hill WH, Shimmin KD (1961) Elevated temperature dynamic elastic moduli of various metallic materials. Wadd TechniG l Report 60:438–445 Hill WH, Shimmin KD (1961) Elevated temperature dynamic elastic moduli of various metallic materials. Wadd TechniG l Report 60:438–445
14.
Zurück zum Zitat Farraro R, McLellan RB (1977) Temperature dependence of the young’s modulus and shear modulus of pure Nickel, Platinum and Molybdenum. Metallurgical Trans A 8(A):1563–1565CrossRef Farraro R, McLellan RB (1977) Temperature dependence of the young’s modulus and shear modulus of pure Nickel, Platinum and Molybdenum. Metallurgical Trans A 8(A):1563–1565CrossRef
15.
Zurück zum Zitat Lamidieu P, Gault C (1986) Improved ultrasonic measurements of Young’s modulus at high temperature in composite ceramics. Mater Sci Eng 77:11–15CrossRef Lamidieu P, Gault C (1986) Improved ultrasonic measurements of Young’s modulus at high temperature in composite ceramics. Mater Sci Eng 77:11–15CrossRef
16.
Zurück zum Zitat Ledbetter HM (1981) Stainless-steels elastic constants at low temperature. J Appl Phys 52(3):1587–1590CrossRef Ledbetter HM (1981) Stainless-steels elastic constants at low temperature. J Appl Phys 52(3):1587–1590CrossRef
17.
Zurück zum Zitat Ledbetter HM (1982) Temperature behavior of Young’s moduli of forty engineering alloys. Cryogenics 22:653–656CrossRef Ledbetter HM (1982) Temperature behavior of Young’s moduli of forty engineering alloys. Cryogenics 22:653–656CrossRef
18.
Zurück zum Zitat Gault C, Platon F, Le Bras D (1985) Ultrasonic measurement of young’s modulus of AL2O3 based refractories at high temperatures. Mater Sci Eng 74:105–111CrossRef Gault C, Platon F, Le Bras D (1985) Ultrasonic measurement of young’s modulus of AL2O3 based refractories at high temperatures. Mater Sci Eng 74:105–111CrossRef
19.
Zurück zum Zitat Baudson H, Debucquoy F, Huger M, Gault C, Rigaud (1999) Ultrasonic measurement of Young’s modulus MgO/C refractories at high temperature. J Europe Ceramic Soc 19:1895–1901CrossRef Baudson H, Debucquoy F, Huger M, Gault C, Rigaud (1999) Ultrasonic measurement of Young’s modulus MgO/C refractories at high temperature. J Europe Ceramic Soc 19:1895–1901CrossRef
20.
Zurück zum Zitat Bichkov YF, Rozanov AN, Skorov DM (1957) Young’s modulus of Zirconium-Niobium alloys. J Nuclear Energ 5:408–412 Bichkov YF, Rozanov AN, Skorov DM (1957) Young’s modulus of Zirconium-Niobium alloys. J Nuclear Energ 5:408–412
22.
Zurück zum Zitat Lynnworth LC (1989) Ultrasonic measurements for process control: theory, techniques and applications. Academic, New York Lynnworth LC (1989) Ultrasonic measurements for process control: theory, techniques and applications. Academic, New York
23.
Zurück zum Zitat Balasubramaniam K, Shah VV, Costley D, Bourdeaux G, Singh JP (1999) High temperature Ultrasonic sensor for the simultaneous measurement of viscosity and temperature of melts. Rev Sci Instruments 70(12):1–6CrossRef Balasubramaniam K, Shah VV, Costley D, Bourdeaux G, Singh JP (1999) High temperature Ultrasonic sensor for the simultaneous measurement of viscosity and temperature of melts. Rev Sci Instruments 70(12):1–6CrossRef
24.
Zurück zum Zitat Balasubramaniam K, Shah VV, Costley D et al. (2001) U.S Patent no: 6,296,385 Balasubramaniam K, Shah VV, Costley D et al. (2001) U.S Patent no: 6,296,385
25.
Zurück zum Zitat Prasad VSK, Balasubramaniam K, Kannan E, Geisinger KL (2008) Viscosity measurements of melts at high temperatures using ultrasonic guided waves. J Mater Process Technol 207:315–320CrossRef Prasad VSK, Balasubramaniam K, Kannan E, Geisinger KL (2008) Viscosity measurements of melts at high temperatures using ultrasonic guided waves. J Mater Process Technol 207:315–320CrossRef
26.
Zurück zum Zitat Pandey JC, Raj M, Lenka SN, Periyannan S, Balasubramaniam K (2011) Measurement of viscosity and melting characteristics of mould powder slags by ultrasonics. J Iron Making Steel Making 38:74–79CrossRef Pandey JC, Raj M, Lenka SN, Periyannan S, Balasubramaniam K (2011) Measurement of viscosity and melting characteristics of mould powder slags by ultrasonics. J Iron Making Steel Making 38:74–79CrossRef
27.
Zurück zum Zitat Huang KN, Huang CF, Li YC et al. (2003) Temperature measurement system based on ultrasonic phase-shift method, IEEE 294–295 Huang KN, Huang CF, Li YC et al. (2003) Temperature measurement system based on ultrasonic phase-shift method, IEEE 294–295
28.
Zurück zum Zitat Hanscombe AP, Richards NP (1992) Distributed temperature sensor, EP 0465029A2 Hanscombe AP, Richards NP (1992) Distributed temperature sensor, EP 0465029A2
29.
Zurück zum Zitat Tsai WY, Chen HC, Liao TL (2005) An ultrasonic air temperature measurement system with self-correction function for humidity. Measure Sci Technol 16:548–556CrossRef Tsai WY, Chen HC, Liao TL (2005) An ultrasonic air temperature measurement system with self-correction function for humidity. Measure Sci Technol 16:548–556CrossRef
30.
Zurück zum Zitat Jen CK, Legoux JG (1998) Clad ultrasonic waveguides with reduced trailing echoes. U.S Patent no: 5828274 Jen CK, Legoux JG (1998) Clad ultrasonic waveguides with reduced trailing echoes. U.S Patent no: 5828274
31.
Zurück zum Zitat Cawley P, Cegla FB (2010) Ultrasonic non-destructive testing. U.S patent no: 8381592 Cawley P, Cegla FB (2010) Ultrasonic non-destructive testing. U.S patent no: 8381592
32.
Zurück zum Zitat Breeuwer R, Faber AJ, Maria MH et al. (2010) Remote ultrasonic transducer system. U.S Patent no: 005247 Breeuwer R, Faber AJ, Maria MH et al. (2010) Remote ultrasonic transducer system. U.S Patent no: 005247
33.
Zurück zum Zitat Jen CK, Thanh Nguyen KY, Bin Cao et al. (1996) Ultrasonic sensors for on-line monitoring of castings and moulding at elevated temperatures U.S Patent no: 5951163 Jen CK, Thanh Nguyen KY, Bin Cao et al. (1996) Ultrasonic sensors for on-line monitoring of castings and moulding at elevated temperatures U.S Patent no: 5951163
34.
Zurück zum Zitat Rosselson BS, Esin AJ, Jones LJ et al. (2000) Ultrasonic sensors for very high temperatures and pressures. U.S Patent no: 6073492 Rosselson BS, Esin AJ, Jones LJ et al. (2000) Ultrasonic sensors for very high temperatures and pressures. U.S Patent no: 6073492
35.
Zurück zum Zitat Sheen SH, Chien HT, Raptis AC (1995) An in-line ultrasonic viscometer. Rev Progress Quantitative Non-Destruct Eval 14(A):1151–1158 Sheen SH, Chien HT, Raptis AC (1995) An in-line ultrasonic viscometer. Rev Progress Quantitative Non-Destruct Eval 14(A):1151–1158
36.
Zurück zum Zitat Lunghofer JG, Tom Brannon C, Conner BL et al. (1999) Self-verifying temperature sensor U.S patent no: 5887978 Lunghofer JG, Tom Brannon C, Conner BL et al. (1999) Self-verifying temperature sensor U.S patent no: 5887978
37.
Zurück zum Zitat Vogt TK, Lowe MJS, Cawley P (2004) Measurement of the material properties of viscous liquids using ultrasonic guided waves. IEEE Trans Ultrason Ferroelectr Freq Control 51:737–747CrossRef Vogt TK, Lowe MJS, Cawley P (2004) Measurement of the material properties of viscous liquids using ultrasonic guided waves. IEEE Trans Ultrason Ferroelectr Freq Control 51:737–747CrossRef
38.
Zurück zum Zitat McSkimin HJ, Basking NJ, Ridge et al. (1960) Measurement of dynamic properties of materials, U.S. Patent no: 2966058 McSkimin HJ, Basking NJ, Ridge et al. (1960) Measurement of dynamic properties of materials, U.S. Patent no: 2966058
39.
Zurück zum Zitat Greenwood MS, Bamberger JA (2002) Measurement of viscosity and shear wave velocity of a liquid or slurry for on-line process control. Ultrasonics 39:623–630CrossRef Greenwood MS, Bamberger JA (2002) Measurement of viscosity and shear wave velocity of a liquid or slurry for on-line process control. Ultrasonics 39:623–630CrossRef
40.
Zurück zum Zitat Rose JL (1999) Ultrasonic waves in solid Media, Cambridge University Press. Chapter; Wave in rods: 143–152 Rose JL (1999) Ultrasonic waves in solid Media, Cambridge University Press. Chapter; Wave in rods: 143–152
41.
Zurück zum Zitat Pavlakovic BN, Lowe MJS, Cawley P, Alleyne DN (1997) “DISPERSE: A general purpose program for creating dispersion curves. Rev Progress Quantitative Non-Destruct Eval 16:185–192CrossRef Pavlakovic BN, Lowe MJS, Cawley P, Alleyne DN (1997) “DISPERSE: A general purpose program for creating dispersion curves. Rev Progress Quantitative Non-Destruct Eval 16:185–192CrossRef
43.
Zurück zum Zitat Periyannan S, Balasubramaniam K (2012) Fuel tube spacer-pad spot-weld quality estimation using guided ultrasonic waves. AIP Conf Proc 1430(1):1655–1662 Periyannan S, Balasubramaniam K (2012) Fuel tube spacer-pad spot-weld quality estimation using guided ultrasonic waves. AIP Conf Proc 1430(1):1655–1662
44.
Zurück zum Zitat Periyannan S, Balasubramaniam K (2015) Multi-level temperature measurements using ultrasonic guided waves. Measurement 61:185–191CrossRef Periyannan S, Balasubramaniam K (2015) Multi-level temperature measurements using ultrasonic guided waves. Measurement 61:185–191CrossRef
45.
Zurück zum Zitat Roylance D (2001) Stress-strain curves doc. MIT, Cambridge, p 02139 Roylance D (2001) Stress-strain curves doc. MIT, Cambridge, p 02139
46.
Zurück zum Zitat Periyannan S, Balasubramaniam K (2014) Temperature dependent E and G measurement of materials using ultrasonic guided waves. AIP Conf Proc 1581(1):256–263CrossRef Periyannan S, Balasubramaniam K (2014) Temperature dependent E and G measurement of materials using ultrasonic guided waves. AIP Conf Proc 1581(1):256–263CrossRef
47.
Zurück zum Zitat Balasubramaniam K, Periyannan S (2015) A novel waveguide technique for the simultaneous measurement of temperatures dependent properties of materials. WO 2015/008299 A2 Balasubramaniam K, Periyannan S (2015) A novel waveguide technique for the simultaneous measurement of temperatures dependent properties of materials. WO 2015/008299 A2
50.
Zurück zum Zitat Nadal MH, LePoac P (2003) Continuous model for the shear modulus as a function of pressure and temperature up to the melting point: analysis and ultrasonic validation. J Appl Phys 93(5):2472–2480CrossRef Nadal MH, LePoac P (2003) Continuous model for the shear modulus as a function of pressure and temperature up to the melting point: analysis and ultrasonic validation. J Appl Phys 93(5):2472–2480CrossRef
51.
Zurück zum Zitat Overton WC, Gaffney J (1955) Temperature variation of the elastic constants of cubic elements. I Copper Phys Rev 98(4):969–977 Overton WC, Gaffney J (1955) Temperature variation of the elastic constants of cubic elements. I Copper Phys Rev 98(4):969–977
52.
Zurück zum Zitat Garofalo F (1960) Temperature dependence of the elastic moduli of several stainless steels. Proc ASTM 60:738–749 Garofalo F (1960) Temperature dependence of the elastic moduli of several stainless steels. Proc ASTM 60:738–749
53.
Zurück zum Zitat Sutton PM (1953) Variation of the elastic constants of crystalline aluminum with temperature between 63 °K and 773 °K. Phys Rev 91:816CrossRef Sutton PM (1953) Variation of the elastic constants of crystalline aluminum with temperature between 63 °K and 773 °K. Phys Rev 91:816CrossRef
54.
55.
Zurück zum Zitat Periyannan S, Balasubramaniam K (2015) Simultaneous moduli measurement of elastic materials at elevated temperatures using an ultrasonic waveguide method. Rev Sci Instruments 86:114903CrossRef Periyannan S, Balasubramaniam K (2015) Simultaneous moduli measurement of elastic materials at elevated temperatures using an ultrasonic waveguide method. Rev Sci Instruments 86:114903CrossRef
56.
Zurück zum Zitat Koshkin N, Shirkevich M (1968) Handbook of elementary physics. Mir publishers, Moscow, pp 51–74 Koshkin N, Shirkevich M (1968) Handbook of elementary physics. Mir publishers, Moscow, pp 51–74
Metadaten
Titel
Moduli Determination at Different Temperatures by an Ultrasonic Waveguide Method
verfasst von
S. Periyannan
K. Balasubramaniam
Publikationsdatum
28.04.2016
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 7/2016
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-016-0157-y

Weitere Artikel der Ausgabe 7/2016

Experimental Mechanics 7/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.