Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

03.09.2015 | Original Article | Ausgabe 1/2017

Neural Computing and Applications 1/2017

Moisture damage evaluation in SBS and lime modified asphalt using AFM and artificial intelligence

Zeitschrift:
Neural Computing and Applications > Ausgabe 1/2017
Autoren:
Md Arifuzzaman, Muhammad Saiful Islam, Muhammad Imtiaz Hossain

Abstract

Damage due to moisture in polymer modified asphalt pavements has been investigated for several decades; yet, the exact and mathematical causes of moisture are not precisely known. Nanoscale experiment has been conducted in this study with an atomic force microscopy (AFM) to determine these effects in terms of adhesive and cohesive forces. A base asphalt binder and one polymer styrene–butadiene–styrene (SBS) were utilized to modify asphalt binders, which was used to prepare sample for testing on glass substrates under AFM. The asphalt samples were conditioned under wet and dry conditions. Current study formulates an artificial intelligence rule which predicts the moisture damage relation in lime and SBS modified asphalts. Base asphalt binders have shown larger adhesion/cohesion values compared to the polymer modified asphalt samples under dry conditions. However, this trend is opposite under wet conditions. Base binders are more susceptible to moisture damage than the polymer modified asphalt binders. ANFIS model (as compared to MLP and SVM) was found to be very promising in these points. The mean relative error was very low 0.02 and 0.03, respectively, for projected and observed data, which also showed the steady performance of the model. Statistical analysis was also performed for dry sample by executing of the three neural network models and found MLP’s performance was very good to other two models.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2017

Neural Computing and Applications 1/2017 Zur Ausgabe

Premium Partner

    Bildnachweise