Skip to main content

2015 | OriginalPaper | Buchkapitel

15. Molecular Dynamics Simulations of Plastic Damage in Metals

verfasst von : Shijing Lu, Dong Li, Donald W. Brenner

Erschienen in: Handbook of Damage Mechanics

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Presented in this chapter is an overview of molecular dynamics simulation (MDS) as applied to modeling damage in metals. This is followed by some examples that illustrate how this technique is being used in the engineering community to help understand how new materials can be made that have targeted mechanical properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat G.J. Ackland, Two-band second moment model for transition metals and alloys. J. Nucl. Mater. 351(1–3), 20–27 (2006)CrossRef G.J. Ackland, Two-band second moment model for transition metals and alloys. J. Nucl. Mater. 351(1–3), 20–27 (2006)CrossRef
Zurück zum Zitat B.J. Alder, T.E. Wainwright, Phase transition for a hard sphere system. J. Chem. Phys. 27(5), 1208 (1957)CrossRef B.J. Alder, T.E. Wainwright, Phase transition for a hard sphere system. J. Chem. Phys. 27(5), 1208 (1957)CrossRef
Zurück zum Zitat M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1989) ISBN-10: 0198556454 M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1989) ISBN-10: 0198556454
Zurück zum Zitat J. Behler, Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys. Chem. Chem Phy. PCCP 13(40), 17930–17955 (2011)CrossRef J. Behler, Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys. Chem. Chem Phy. PCCP 13(40), 17930–17955 (2011)CrossRef
Zurück zum Zitat H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684 (1984)CrossRef H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684 (1984)CrossRef
Zurück zum Zitat G.P. Berman, F.M. Izrailev, The Fermi-Pasta-Ulam problem: fifty years of progress. Chaos. (Woodbury) 15(1), 15104 (2005)MathSciNetCrossRef G.P. Berman, F.M. Izrailev, The Fermi-Pasta-Ulam problem: fifty years of progress. Chaos. (Woodbury) 15(1), 15104 (2005)MathSciNetCrossRef
Zurück zum Zitat D.W. Brenner, The art and science of an analytic potential. Phys. Status Solidi B 217(1), 23–40 (2000)CrossRef D.W. Brenner, The art and science of an analytic potential. Phys. Status Solidi B 217(1), 23–40 (2000)CrossRef
Zurück zum Zitat D.W. Brenner, Challenges to marrying atomic and continuum modeling of materials. Curr. Opinion Solid State Mater. Sci. 17(6), 257–262 (2013)CrossRef D.W. Brenner, Challenges to marrying atomic and continuum modeling of materials. Curr. Opinion Solid State Mater. Sci. 17(6), 257–262 (2013)CrossRef
Zurück zum Zitat D.W. Brenner and B.J. Garrison, Gas-Surface Reactions: Molecular Dynamics Simulations of Real Systems, in Adv. Chem. Phys, (Wiley, New York, K.P. Lawley, Ed.) Vol. 76, pp. 281–333 (1989) D.W. Brenner and B.J. Garrison, Gas-Surface Reactions: Molecular Dynamics Simulations of Real Systems, in Adv. Chem. Phys, (Wiley, New York, K.P. Lawley, Ed.) Vol. 76, pp. 281–333 (1989)
Zurück zum Zitat D.W. Brenner, O.A. Shenderova, D.A. Areshkin, Quantum-based analytic interatomic forces and materials simulation. Rev. Comput. Chem. 12, 207–239 (1998)CrossRef D.W. Brenner, O.A. Shenderova, D.A. Areshkin, Quantum-based analytic interatomic forces and materials simulation. Rev. Comput. Chem. 12, 207–239 (1998)CrossRef
Zurück zum Zitat E.M. Bringa et al., Ultrahigh strength in nanocrystalline materials under shock loading. Science (New York) 309(5742), 1838–1841 (2005)CrossRef E.M. Bringa et al., Ultrahigh strength in nanocrystalline materials under shock loading. Science (New York) 309(5742), 1838–1841 (2005)CrossRef
Zurück zum Zitat J.W. Cahn, J.E. Taylor, A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation. Acta Mater. 52(16), 4887–4898 (2004)CrossRef J.W. Cahn, J.E. Taylor, A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation. Acta Mater. 52(16), 4887–4898 (2004)CrossRef
Zurück zum Zitat J.W. Cahn, Y. Mishin, A. Suzuki, Coupling grain boundary motion to shear deformation. Acta Mater. 54(19), 4953–4975 (2006)CrossRef J.W. Cahn, Y. Mishin, A. Suzuki, Coupling grain boundary motion to shear deformation. Acta Mater. 54(19), 4953–4975 (2006)CrossRef
Zurück zum Zitat R. Car, M. Parrinello, Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55(22), 2471–2474 (1985) R. Car, M. Parrinello, Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55(22), 2471–2474 (1985)
Zurück zum Zitat J.W. Crill, X. Ji, D.L. Irving, D.W. Brenner, C.W. Padgett, Atomic and multi-scale modeling of non-equilibrium dynamics at metal–metal contacts. Model. Simul. Mater. Sci. Eng. 18(3), 034001 (2010)CrossRef J.W. Crill, X. Ji, D.L. Irving, D.W. Brenner, C.W. Padgett, Atomic and multi-scale modeling of non-equilibrium dynamics at metal–metal contacts. Model. Simul. Mater. Sci. Eng. 18(3), 034001 (2010)CrossRef
Zurück zum Zitat J. D. Schall, C.W. Padgett, D.W. Brenner, Ad hoc continuum-atomistic thermostat for modeling heat flow in molecular dynamics simulations. Mol. Simul. 31(4), 283–288 (2005)CrossRef J. D. Schall, C.W. Padgett, D.W. Brenner, Ad hoc continuum-atomistic thermostat for modeling heat flow in molecular dynamics simulations. Mol. Simul. 31(4), 283–288 (2005)CrossRef
Zurück zum Zitat M. Daw, M. Baskes, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984)CrossRef M. Daw, M. Baskes, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984)CrossRef
Zurück zum Zitat M.S. Daw, S.M. Foiles, M.I. Baskes, The EAM is reviewed in: mater. Sci. Rep. 9, 251 (1993)CrossRef M.S. Daw, S.M. Foiles, M.I. Baskes, The EAM is reviewed in: mater. Sci. Rep. 9, 251 (1993)CrossRef
Zurück zum Zitat P. Derlet, A. Hasnaoui, H. Van Swygenhoven, Atomistic simulations as guidance to experiments. Scr. Mater. 49(7), 629–635 (2003)CrossRef P. Derlet, A. Hasnaoui, H. Van Swygenhoven, Atomistic simulations as guidance to experiments. Scr. Mater. 49(7), 629–635 (2003)CrossRef
Zurück zum Zitat A. Dongare, A. Rajendran, B. LaMattina, M. Zikry, D. Brenner, Atomic scale simulations of ductile failure micromechanisms in nanocrystalline Cu at high strain rates. Phys. Rev. B 80(10), 104108 (2009)CrossRef A. Dongare, A. Rajendran, B. LaMattina, M. Zikry, D. Brenner, Atomic scale simulations of ductile failure micromechanisms in nanocrystalline Cu at high strain rates. Phys. Rev. B 80(10), 104108 (2009)CrossRef
Zurück zum Zitat A.M. Dongare, A.M. Rajendran, B. LaMattina, M.A. Zikry, D.W. Brenner, Atomic scale studies of spall behavior in nanocrystalline Cu. J. Appl. Phys. 108(11), 113518 (2010)CrossRef A.M. Dongare, A.M. Rajendran, B. LaMattina, M.A. Zikry, D.W. Brenner, Atomic scale studies of spall behavior in nanocrystalline Cu. J. Appl. Phys. 108(11), 113518 (2010)CrossRef
Zurück zum Zitat A.M. Dongare et al., An angular-dependent embedded atom method (A-EAM) interatomic potential to model thermodynamic and mechanical behavior of Al/Si composite materials. Model. Simul. Mater. Sci. Eng. 20(3), 035007 (2012)CrossRef A.M. Dongare et al., An angular-dependent embedded atom method (A-EAM) interatomic potential to model thermodynamic and mechanical behavior of Al/Si composite materials. Model. Simul. Mater. Sci. Eng. 20(3), 035007 (2012)CrossRef
Zurück zum Zitat S.L. Dudarev, P.M. Derlet, A ‘magnetic’ interatomic potential for molecular dynamics simulations. J. Phys. Condens. Matter 17(44), 7097–7118 (2005)CrossRef S.L. Dudarev, P.M. Derlet, A ‘magnetic’ interatomic potential for molecular dynamics simulations. J. Phys. Condens. Matter 17(44), 7097–7118 (2005)CrossRef
Zurück zum Zitat V. Duin, C.T. Adri, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105(41), 9396–9409 (2001)CrossRef V. Duin, C.T. Adri, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105(41), 9396–9409 (2001)CrossRef
Zurück zum Zitat V. Dupont, T.C. Germann, Strain rate and orientation dependencies of the strength of single crystalline copper under compression. Phys. Rev. B 86(13), 134111 (2012)CrossRef V. Dupont, T.C. Germann, Strain rate and orientation dependencies of the strength of single crystalline copper under compression. Phys. Rev. B 86(13), 134111 (2012)CrossRef
Zurück zum Zitat F. Ercolessi, J.B. Adams, Interatomic potentials from first-principles calculations: the force-matching method. Europhys. Lett. (EPL) 26(8), 583–588 (1994)CrossRef F. Ercolessi, J.B. Adams, Interatomic potentials from first-principles calculations: the force-matching method. Europhys. Lett. (EPL) 26(8), 583–588 (1994)CrossRef
Zurück zum Zitat F. Ercolessi, E. Tosatti, M. Parrinello, Au (100) surface reconstruction. Phys. Rev. Lett. 57(6), 719–722 (1986)CrossRef F. Ercolessi, E. Tosatti, M. Parrinello, Au (100) surface reconstruction. Phys. Rev. Lett. 57(6), 719–722 (1986)CrossRef
Zurück zum Zitat D. Farkas, W.A. Curtin, Plastic deformation mechanisms in nanocrystalline columnar grain structures. Mater. Sci. Eng. A 412(1–2), 316–322 (2005)CrossRef D. Farkas, W.A. Curtin, Plastic deformation mechanisms in nanocrystalline columnar grain structures. Mater. Sci. Eng. A 412(1–2), 316–322 (2005)CrossRef
Zurück zum Zitat D. Farkas, H. Van Swygenhoven, P. Derlet, Intergranular fracture in nanocrystalline metals. Phys. Rev. B 66(6), 060101 (2002)CrossRef D. Farkas, H. Van Swygenhoven, P. Derlet, Intergranular fracture in nanocrystalline metals. Phys. Rev. B 66(6), 060101 (2002)CrossRef
Zurück zum Zitat M.W. Finnis, J.E. Sinclair, A simple empirical N -body potential for transition metals. Philos. Mag. A 50(1), 45–55 (1984)CrossRef M.W. Finnis, J.E. Sinclair, A simple empirical N -body potential for transition metals. Philos. Mag. A 50(1), 45–55 (1984)CrossRef
Zurück zum Zitat M. Furtkamp, G. Gottstein, D.A. Molodov, V.N. Semenov, L.S. Shvindlerman, Grain boundary migration in Fe–3.5 % Si bicrystals with [001] tilt boundaries. Acta Mater. 46(12), 4103–4110 (1998)CrossRef M. Furtkamp, G. Gottstein, D.A. Molodov, V.N. Semenov, L.S. Shvindlerman, Grain boundary migration in Fe–3.5 % Si bicrystals with [001] tilt boundaries. Acta Mater. 46(12), 4103–4110 (1998)CrossRef
Zurück zum Zitat J.D. Gale, A.L. Rohl, The general utility lattice program (GULP). Mol. Simul. 29(5), 291–341 (2003)CrossRefMATH J.D. Gale, A.L. Rohl, The general utility lattice program (GULP). Mol. Simul. 29(5), 291–341 (2003)CrossRefMATH
Zurück zum Zitat J. Gibson, A. Goland, M. Milgram, G. Vineyard, Dynamics of radiation damage. Phys. Rev. 120(4), 1229–1253 (1960)CrossRef J. Gibson, A. Goland, M. Milgram, G. Vineyard, Dynamics of radiation damage. Phys. Rev. 120(4), 1229–1253 (1960)CrossRef
Zurück zum Zitat R.B.N. Godiksen, S. Schmidt, D. Juul Jensen, Molecular dynamics simulations of grain boundary migration during recrystallization employing tilt and twist dislocation boundaries to provide the driving pressure. Model. Simul. Mater. Sci. Eng. 16(6), 065002 (2008)CrossRef R.B.N. Godiksen, S. Schmidt, D. Juul Jensen, Molecular dynamics simulations of grain boundary migration during recrystallization employing tilt and twist dislocation boundaries to provide the driving pressure. Model. Simul. Mater. Sci. Eng. 16(6), 065002 (2008)CrossRef
Zurück zum Zitat T. Gorkaya, D.A. Molodov, G. Gottstein, Stress-driven migration of symmetrical 〈100〉 tilt grain boundaries in Al bicrystals. Acta Mater. 57(18), 5396–5405 (2009)CrossRef T. Gorkaya, D.A. Molodov, G. Gottstein, Stress-driven migration of symmetrical 〈100〉 tilt grain boundaries in Al bicrystals. Acta Mater. 57(18), 5396–5405 (2009)CrossRef
Zurück zum Zitat G. Gottstein, D.A. Molodov, Grain boundary migration in metals: recent developments. Inter. Sci. 22, 7–22 (1998) G. Gottstein, D.A. Molodov, Grain boundary migration in metals: recent developments. Inter. Sci. 22, 7–22 (1998)
Zurück zum Zitat G. Gottstein, L.S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications. Materials Science & Technology, 2nd edn. (CRC Press, Boca Rotan, 2009)CrossRef G. Gottstein, L.S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications. Materials Science & Technology, 2nd edn. (CRC Press, Boca Rotan, 2009)CrossRef
Zurück zum Zitat A.J. Haslam et al., Effects of grain growth on grain-boundary diffusion creep by molecular-dynamics simulation. Acta Mater. 52(7), 1971–1987 (2004)CrossRef A.J. Haslam et al., Effects of grain growth on grain-boundary diffusion creep by molecular-dynamics simulation. Acta Mater. 52(7), 1971–1987 (2004)CrossRef
Zurück zum Zitat B. Hess, B. Thijsse, E. Van der Giessen, Molecular dynamics study of dislocation nucleation from a crack tip. Phys. Rev. B 71(5), 054111 (2005)CrossRef B. Hess, B. Thijsse, E. Van der Giessen, Molecular dynamics study of dislocation nucleation from a crack tip. Phys. Rev. B 71(5), 054111 (2005)CrossRef
Zurück zum Zitat J. Hirschfelder, H. Eyring, B. Topley, Reactions involving hydrogen molecules and atoms. J. Chem. Phys. 4(3), 170 (1936)CrossRef J. Hirschfelder, H. Eyring, B. Topley, Reactions involving hydrogen molecules and atoms. J. Chem. Phys. 4(3), 170 (1936)CrossRef
Zurück zum Zitat B.L. Holian, P.S. Lomdahl, Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations. Science 280(5372), 2085–2088 (1998) B.L. Holian, P.S. Lomdahl, Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations. Science 280(5372), 2085–2088 (1998)
Zurück zum Zitat J.D. Honeycutt, H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91(19), 4950–4963 (1987)CrossRef J.D. Honeycutt, H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91(19), 4950–4963 (1987)CrossRef
Zurück zum Zitat Y. Huang, F.J. Humphreys, Subgrain growth and low angle boundary mobility in aluminium crystals of orientation {110}〈001〉. Acta Mater. 48(8), 2017–2030 (2000)CrossRef Y. Huang, F.J. Humphreys, Subgrain growth and low angle boundary mobility in aluminium crystals of orientation {110}〈001〉. Acta Mater. 48(8), 2017–2030 (2000)CrossRef
Zurück zum Zitat D.L. Irving, C.W. Padgett, D.W. Brenner, Coupled molecular dynamics/continuum simulations of Joule heating and melting of isolated copper–aluminum asperity contacts. Model. Simul. Mater. Sci. Eng. 17(1), 015004 (2009a)CrossRef D.L. Irving, C.W. Padgett, D.W. Brenner, Coupled molecular dynamics/continuum simulations of Joule heating and melting of isolated copper–aluminum asperity contacts. Model. Simul. Mater. Sci. Eng. 17(1), 015004 (2009a)CrossRef
Zurück zum Zitat D.L. Irving, C.W. Padgett, J.W. Mintmire, D.W. Brenner, Multiscale modeling of metal–metal contact dynamics under high electromagnetic stress: timescales and mechanisms for joule melting of Al–Cu asperities. IEEE Trans. Magn. 45(1), 331–335 (2009b)CrossRef D.L. Irving, C.W. Padgett, J.W. Mintmire, D.W. Brenner, Multiscale modeling of metal–metal contact dynamics under high electromagnetic stress: timescales and mechanisms for joule melting of Al–Cu asperities. IEEE Trans. Magn. 45(1), 331–335 (2009b)CrossRef
Zurück zum Zitat K. Jacobsen, J. Norskov, M. Puska, Interatomic interactions in the effective-medium theory. Phys. Rev. B 35(14), 7423–7442 (1987)CrossRef K. Jacobsen, J. Norskov, M. Puska, Interatomic interactions in the effective-medium theory. Phys. Rev. B 35(14), 7423–7442 (1987)CrossRef
Zurück zum Zitat S. Jang, Y. Purohit, D.L. Irving et al., Influence of Pb segregation on the deformation of nanocrystalline Al: insights from molecular simulations. Acta Mater. 56(17), 4750–4761 (2008a)CrossRef S. Jang, Y. Purohit, D.L. Irving et al., Influence of Pb segregation on the deformation of nanocrystalline Al: insights from molecular simulations. Acta Mater. 56(17), 4750–4761 (2008a)CrossRef
Zurück zum Zitat S. Jang, Y. Purohit, D. Irving et al., Molecular dynamics simulations of deformation in nanocrystalline Al–Pb alloys. Mater. Sci. Eng. A 493(1–2), 53–57 (2008b)CrossRef S. Jang, Y. Purohit, D. Irving et al., Molecular dynamics simulations of deformation in nanocrystalline Al–Pb alloys. Mater. Sci. Eng. A 493(1–2), 53–57 (2008b)CrossRef
Zurück zum Zitat K.G.F. Janssens et al., Computing the mobility of grain boundaries. Nat. Mater. 5(2), 124–127 (2006)CrossRef K.G.F. Janssens et al., Computing the mobility of grain boundaries. Nat. Mater. 5(2), 124–127 (2006)CrossRef
Zurück zum Zitat K.V. Jose, N.A. Jovan, J. Behler, Construction of high-dimensional neural network potentials using environment-dependent atom pairs. J. Chem. Phys. 136(19), 194111 (2012)CrossRef K.V. Jose, N.A. Jovan, J. Behler, Construction of high-dimensional neural network potentials using environment-dependent atom pairs. J. Chem. Phys. 136(19), 194111 (2012)CrossRef
Zurück zum Zitat K. Kadau, T.C. Germann, P.S. Lomdahl, B.L. Holian, Microscopic view of structural phase transitions induced by shock waves. Science (New York) 296(5573), 1681–1684 (2002)CrossRef K. Kadau, T.C. Germann, P.S. Lomdahl, B.L. Holian, Microscopic view of structural phase transitions induced by shock waves. Science (New York) 296(5573), 1681–1684 (2002)CrossRef
Zurück zum Zitat C. Kelchner, S. Plimpton, J. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58(17), 11085–11088 (1998)CrossRef C. Kelchner, S. Plimpton, J. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58(17), 11085–11088 (1998)CrossRef
Zurück zum Zitat B.-J. Lee, M. Baskes, Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 62(13), 8564–8567 (2000)CrossRef B.-J. Lee, M. Baskes, Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 62(13), 8564–8567 (2000)CrossRef
Zurück zum Zitat J. Li, AtomEye: an efficient atomistic configuration viewer. Model. Simul. Mater. Sci. Eng. 11(2), 173–177 (2003)CrossRefMATH J. Li, AtomEye: an efficient atomistic configuration viewer. Model. Simul. Mater. Sci. Eng. 11(2), 173–177 (2003)CrossRefMATH
Zurück zum Zitat P.-W. Ma, S.L. Dudarev, C.H. Woo, Spin–lattice-electron dynamics simulations of magnetic materials. Phys. Rev. B 85(18), 184301 (2012)CrossRef P.-W. Ma, S.L. Dudarev, C.H. Woo, Spin–lattice-electron dynamics simulations of magnetic materials. Phys. Rev. B 85(18), 184301 (2012)CrossRef
Zurück zum Zitat D. Mathieu, Split charge equilibration method with correct dissociation limits. J. Chem. Phys. 127(22), 224103 (2007)CrossRef D. Mathieu, Split charge equilibration method with correct dissociation limits. J. Chem. Phys. 127(22), 224103 (2007)CrossRef
Zurück zum Zitat J.A. McCammon, B.R. Gelin, M. Karplus, Dynamics of folded proteins. Nature 267(5612), 585–590 (1977)CrossRef J.A. McCammon, B.R. Gelin, M. Karplus, Dynamics of folded proteins. Nature 267(5612), 585–590 (1977)CrossRef
Zurück zum Zitat R.E. Miller, E.B. Tadmor, A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model. Simul. Mater. Sci. Eng. 17(5), 053001 (2009)CrossRef R.E. Miller, E.B. Tadmor, A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model. Simul. Mater. Sci. Eng. 17(5), 053001 (2009)CrossRef
Zurück zum Zitat D. Molodov, V. Ivanov, G. Gottstein, Low angle tilt boundary migration coupled to shear deformation. Acta Mater. 55(5), 1843–1848 (2007)CrossRef D. Molodov, V. Ivanov, G. Gottstein, Low angle tilt boundary migration coupled to shear deformation. Acta Mater. 55(5), 1843–1848 (2007)CrossRef
Zurück zum Zitat F. Müller-Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106(14), 6082 (1997)CrossRef F. Müller-Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106(14), 6082 (1997)CrossRef
Zurück zum Zitat R. Nistor, M. Müser, Dielectric properties of solids in the regular and split-charge equilibration formalisms. Phys. Rev. B 79(10), 104303 (2009)CrossRef R. Nistor, M. Müser, Dielectric properties of solids in the regular and split-charge equilibration formalisms. Phys. Rev. B 79(10), 104303 (2009)CrossRef
Zurück zum Zitat R.A. Nistor, J.G. Polihronov, M.H. Müser, N.J. Mosey, A generalization of the charge equilibration method for nonmetallic materials. J. Chem. Phys. 125(9), 094108 (2006)CrossRef R.A. Nistor, J.G. Polihronov, M.H. Müser, N.J. Mosey, A generalization of the charge equilibration method for nonmetallic materials. J. Chem. Phys. 125(9), 094108 (2006)CrossRef
Zurück zum Zitat S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81(1), 511 (1984)CrossRef S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81(1), 511 (1984)CrossRef
Zurück zum Zitat D.L. Olmsted, E.A. Holm, S.M. Foiles, Survey of computed grain boundary properties in face-centered cubic metals – II: grain boundary mobility. Acta Mater. 57(13), 3704–3713 (2009)CrossRef D.L. Olmsted, E.A. Holm, S.M. Foiles, Survey of computed grain boundary properties in face-centered cubic metals – II: grain boundary mobility. Acta Mater. 57(13), 3704–3713 (2009)CrossRef
Zurück zum Zitat C.W. Padgett, D.W. Brenner, A continuum-atomistic method for incorporating Joule heating into classical molecular dynamics simulations. Mol. Simul. 31(11), 749–757 (2005)CrossRef C.W. Padgett, D.W. Brenner, A continuum-atomistic method for incorporating Joule heating into classical molecular dynamics simulations. Mol. Simul. 31(11), 749–757 (2005)CrossRef
Zurück zum Zitat M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52(12), 7182 (1981) M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52(12), 7182 (1981)
Zurück zum Zitat S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)CrossRefMATH S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)CrossRefMATH
Zurück zum Zitat A. Rahman, Correlations in the motion of atoms in liquid argon. Phys. Rev. 136(2A), A405–A411 (1964)CrossRef A. Rahman, Correlations in the motion of atoms in liquid argon. Phys. Rev. 136(2A), A405–A411 (1964)CrossRef
Zurück zum Zitat R.K. Rajgarhia, D.E. Spearot, A. Saxena, Molecular dynamics simulations of dislocation activity in single-crystal and nanocrystalline copper doped with antimony. Metall. Mater. Trans. A 41(4), 854–860 (2010)CrossRef R.K. Rajgarhia, D.E. Spearot, A. Saxena, Molecular dynamics simulations of dislocation activity in single-crystal and nanocrystalline copper doped with antimony. Metall. Mater. Trans. A 41(4), 854–860 (2010)CrossRef
Zurück zum Zitat R. Ravelo, B. Holian, T. Germann, P. Lomdahl, Constant-stress Hugoniostat method for following the dynamical evolution of shocked matter. Phys. Rev. B 70(1), 014103 (2004)CrossRef R. Ravelo, B. Holian, T. Germann, P. Lomdahl, Constant-stress Hugoniostat method for following the dynamical evolution of shocked matter. Phys. Rev. B 70(1), 014103 (2004)CrossRef
Zurück zum Zitat T.J. Rupert, D.S. Gianola, Y. Gan, K.J. Hemker, Experimental observations of stress-driven grain boundary migration. Science (New York) 326(5960), 1686–1690 (2009)CrossRef T.J. Rupert, D.S. Gianola, Y. Gan, K.J. Hemker, Experimental observations of stress-driven grain boundary migration. Science (New York) 326(5960), 1686–1690 (2009)CrossRef
Zurück zum Zitat J.-P. Ryckaert, G. Ciccotti, H.J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23(3), 327–341 (1977)CrossRef J.-P. Ryckaert, G. Ciccotti, H.J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23(3), 327–341 (1977)CrossRef
Zurück zum Zitat C. Schäfer, H. Urbassek, L. Zhigilei, Metal ablation by picosecond laser pulses: a hybrid simulation. Phys. Rev. B 66(11), 115404 (2002)CrossRef C. Schäfer, H. Urbassek, L. Zhigilei, Metal ablation by picosecond laser pulses: a hybrid simulation. Phys. Rev. B 66(11), 115404 (2002)CrossRef
Zurück zum Zitat J. Schiøtz, T. Vegge, F. Di Tolla, K. Jacobsen, Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys. Rev. B 60(17), 11971–11983 (1999)CrossRef J. Schiøtz, T. Vegge, F. Di Tolla, K. Jacobsen, Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys. Rev. B 60(17), 11971–11983 (1999)CrossRef
Zurück zum Zitat B. Schönfelder, G. Gottstein, L.S. Shvindlerman, Atomistic simulations of grain boundary migration in copper. Metall. Mater. Trans. A 37(6), 1757–1771 (2006)CrossRef B. Schönfelder, G. Gottstein, L.S. Shvindlerman, Atomistic simulations of grain boundary migration in copper. Metall. Mater. Trans. A 37(6), 1757–1771 (2006)CrossRef
Zurück zum Zitat T.-R. Shan et al., Second-generation charge-optimized many-body potential for Si/SiO2 and amorphous silica. Phys. Rev. B 82(23), 235302 (2010)CrossRef T.-R. Shan et al., Second-generation charge-optimized many-body potential for Si/SiO2 and amorphous silica. Phys. Rev. B 82(23), 235302 (2010)CrossRef
Zurück zum Zitat M.A. Shehadeh, E.M. Bringa, H.M. Zbib, J.M. McNaney, B.A. Remington, Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations. Appl. Phys. Lett. 89(17), 171918 (2006)CrossRef M.A. Shehadeh, E.M. Bringa, H.M. Zbib, J.M. McNaney, B.A. Remington, Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations. Appl. Phys. Lett. 89(17), 171918 (2006)CrossRef
Zurück zum Zitat S.B. Sinnott, D.W. Brenner, Three decades of many-body potentials in materials research. MRS Bull. 37(05), 469–473 (2012)CrossRef S.B. Sinnott, D.W. Brenner, Three decades of many-body potentials in materials research. MRS Bull. 37(05), 469–473 (2012)CrossRef
Zurück zum Zitat F.H. Stillinger, Improved simulation of liquid water by molecular dynamics. J. Chem. Phys. 60(4), 1545 (1974)CrossRef F.H. Stillinger, Improved simulation of liquid water by molecular dynamics. J. Chem. Phys. 60(4), 1545 (1974)CrossRef
Zurück zum Zitat A. Stukowski, K. Albe, Dislocation detection algorithm for atomistic simulations. Model. Simul. Mater. Sci. Eng. 18(2), 025016 (2010)CrossRef A. Stukowski, K. Albe, Dislocation detection algorithm for atomistic simulations. Model. Simul. Mater. Sci. Eng. 18(2), 025016 (2010)CrossRef
Zurück zum Zitat Z.T. Trautt, M. Upmanyu, A. Karma, Interface mobility from interface random walk. Science (New York) 314(5799), 632–635 (2006)CrossRef Z.T. Trautt, M. Upmanyu, A. Karma, Interface mobility from interface random walk. Science (New York) 314(5799), 632–635 (2006)CrossRef
Zurück zum Zitat H. Van Swygenhoven, M. Spaczer, A. Caro, Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni. Acta Mater. 47(10), 3117–3126 (1999)CrossRef H. Van Swygenhoven, M. Spaczer, A. Caro, Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni. Acta Mater. 47(10), 3117–3126 (1999)CrossRef
Zurück zum Zitat H. Van Swygenhoven, P.M. Derlet, A.G. Frøseth, Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3(6), 399–403 (2004)CrossRef H. Van Swygenhoven, P.M. Derlet, A.G. Frøseth, Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3(6), 399–403 (2004)CrossRef
Zurück zum Zitat A.F. Voter, A method for accelerating the molecular dynamics simulation of infrequent events. J. Chem. Phys. 106(11), 4665 (1997)CrossRef A.F. Voter, A method for accelerating the molecular dynamics simulation of infrequent events. J. Chem. Phys. 106(11), 4665 (1997)CrossRef
Zurück zum Zitat A. Voter, Parallel replica method for dynamics of infrequent events. Phys. Rev. B 57(22), R13985–R13988 (1998)CrossRef A. Voter, Parallel replica method for dynamics of infrequent events. Phys. Rev. B 57(22), R13985–R13988 (1998)CrossRef
Zurück zum Zitat Y.M. Wang, E. Ma, M.W. Chen, Enhanced tensile ductility and toughness in nanostructured Cu. Appl. Phys. Lett. 80(13), 2395 (2002)CrossRef Y.M. Wang, E. Ma, M.W. Chen, Enhanced tensile ductility and toughness in nanostructured Cu. Appl. Phys. Lett. 80(13), 2395 (2002)CrossRef
Zurück zum Zitat M. Winning, Motion of 〈100〉-tilt grain boundaries. Acta Mater. 51(20), 6465–6475 (2003)CrossRef M. Winning, Motion of 〈100〉-tilt grain boundaries. Acta Mater. 51(20), 6465–6475 (2003)CrossRef
Zurück zum Zitat M. Winning, G. Gottstein, On the mechanisms of grain boundary migration. Acta Mater. 50, 353–363 (2002)CrossRef M. Winning, G. Gottstein, On the mechanisms of grain boundary migration. Acta Mater. 50, 353–363 (2002)CrossRef
Zurück zum Zitat M. Winning, A.D. Rollett, Transition between low and high angle grain boundaries. Acta Mater. 53(10), 2901–2907 (2005)CrossRef M. Winning, A.D. Rollett, Transition between low and high angle grain boundaries. Acta Mater. 53(10), 2901–2907 (2005)CrossRef
Zurück zum Zitat M. Wojdyr, S. Khalil, Y. Liu, I. Szlufarska, Energetics and structure of 〈001〉 tilt grain boundaries in SiC. Model. Simul. Mater. Sci. Eng. 18(7), 075009 (2010)CrossRef M. Wojdyr, S. Khalil, Y. Liu, I. Szlufarska, Energetics and structure of 〈001〉 tilt grain boundaries in SiC. Model. Simul. Mater. Sci. Eng. 18(7), 075009 (2010)CrossRef
Zurück zum Zitat V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, H. Gleiter, Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 49(14), 2713–2722 (2001)CrossRef V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, H. Gleiter, Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 49(14), 2713–2722 (2001)CrossRef
Zurück zum Zitat F. Yuan, X. Wu, Shock response of nanotwinned copper from large-scale molecular dynamics simulations. Phys. Rev. B 86(13), 134108 (2012)CrossRef F. Yuan, X. Wu, Shock response of nanotwinned copper from large-scale molecular dynamics simulations. Phys. Rev. B 86(13), 134108 (2012)CrossRef
Zurück zum Zitat V.V. Zhakhovsky, M.M. Budzevich, N.A. Inogamov, I.I. Oleynik, C.T. White, Two-zone elastic–plastic single shock waves in solids. Phys. Rev. Lett. 107(13), 135502 (2011)CrossRef V.V. Zhakhovsky, M.M. Budzevich, N.A. Inogamov, I.I. Oleynik, C.T. White, Two-zone elastic–plastic single shock waves in solids. Phys. Rev. Lett. 107(13), 135502 (2011)CrossRef
Zurück zum Zitat V.V. Zhakhovsky, M.M. Budzevich, N. Inogamov, C.T. White, I.I. Oleynik, Single Two-Zone Elastic–Plastic Shock Waves in Solids (2012), pp. 1227–32 V.V. Zhakhovsky, M.M. Budzevich, N. Inogamov, C.T. White, I.I. Oleynik, Single Two-Zone Elastic–Plastic Shock Waves in Solids (2012), pp. 1227–32
Zurück zum Zitat H. Zhang, M.I. Mendelev, D.J. Srolovitz, Computer simulation of the elastically driven migration of a flat grain boundary. Acta Mater. 52(9), 2569–2576 (2004)CrossRef H. Zhang, M.I. Mendelev, D.J. Srolovitz, Computer simulation of the elastically driven migration of a flat grain boundary. Acta Mater. 52(9), 2569–2576 (2004)CrossRef
Zurück zum Zitat J. Zhou, V. Mohles, Mobility evaluation of <110> twist grain boundary motion from molecular dynamics simulation. Steel Res. Int. 82(2), 114–118 (2011)CrossRef J. Zhou, V. Mohles, Mobility evaluation of <110> twist grain boundary motion from molecular dynamics simulation. Steel Res. Int. 82(2), 114–118 (2011)CrossRef
Zurück zum Zitat S. Zhou, D. Beazley, P. Lomdahl, B. Holian, Large-scale molecular dynamics simulations of three-dimensional ductile failure. Phys. Rev. Lett. 78(3), 479–482 (1997)CrossRef S. Zhou, D. Beazley, P. Lomdahl, B. Holian, Large-scale molecular dynamics simulations of three-dimensional ductile failure. Phys. Rev. Lett. 78(3), 479–482 (1997)CrossRef
Metadaten
Titel
Molecular Dynamics Simulations of Plastic Damage in Metals
verfasst von
Shijing Lu
Dong Li
Donald W. Brenner
Copyright-Jahr
2015
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-5589-9_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.