Skip to main content
Erschienen in: Advances in Manufacturing 3/2022

13.05.2022

Molecular dynamics study on surface formation and phase transformation in nanometric cutting of β-Sn

verfasst von: Zhi-Fu Xue, Min Lai, Fei-Fei Xu, Feng-Zhou Fang

Erschienen in: Advances in Manufacturing | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Atomic motion and surface formation in the nanometric cutting process of β-Sn are investigated using molecular dynamics (MD). A stagnation region is observed that changes the shape of the tool edge involved in nanometric cutting, resulting in a fluctuation in the cutting forces. It is found that single-crystal tin releases the high compressive stress generated under the tool pressure through slip and phase transformation. The tin transformation proceeds from a β-Sn structure to a bct-Sn structure. The effects of the cutting speed, undeformed chip thickness (UCT) and tool edge radius on material removal are also explored. A better surface is obtained through material embrittlement caused by a higher speed. In addition, a smaller UCT and sharper tool edge help reduce subsurface damage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mallock A (1881) The action of cutting tools. Proc R Soc Lond 33:127–139 Mallock A (1881) The action of cutting tools. Proc R Soc Lond 33:127–139
2.
Zurück zum Zitat Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16:267–275CrossRef Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16:267–275CrossRef
3.
Zurück zum Zitat Merchant ME (1945) Mechanics of the metal cutting process. II. Plasticity conditions in orthogonal cutting. J Appl Phys 16:318–324CrossRef Merchant ME (1945) Mechanics of the metal cutting process. II. Plasticity conditions in orthogonal cutting. J Appl Phys 16:318–324CrossRef
4.
Zurück zum Zitat Jackson MJ, Ahmed W, Whitt M et al (2015) Chapter 10—commercialization of nanotechnologies: technology transfer from university research laboratories. Emerg Nanotechnol Manuf 4:270–278 Jackson MJ, Ahmed W, Whitt M et al (2015) Chapter 10—commercialization of nanotechnologies: technology transfer from university research laboratories. Emerg Nanotechnol Manuf 4:270–278
5.
Zurück zum Zitat Fang FZ, Xu FF (2018) Recent advances in micro/nano-cutting: effect of tool edge and material properties. Nanomanuf Metrol 1:4–31CrossRef Fang FZ, Xu FF (2018) Recent advances in micro/nano-cutting: effect of tool edge and material properties. Nanomanuf Metrol 1:4–31CrossRef
6.
Zurück zum Zitat Arrazola PJ, Özel T, Umbrello D et al (2013) Recent advances in modelling of metal machining processes. CIRP Ann Manuf Technol 62:695–718CrossRef Arrazola PJ, Özel T, Umbrello D et al (2013) Recent advances in modelling of metal machining processes. CIRP Ann Manuf Technol 62:695–718CrossRef
7.
Zurück zum Zitat Lai M, Zhang XD, Fang FZ (2012) Study on critical rake angle in nanometric cutting. Appl Phys A 108:809–818CrossRef Lai M, Zhang XD, Fang FZ (2012) Study on critical rake angle in nanometric cutting. Appl Phys A 108:809–818CrossRef
8.
Zurück zum Zitat Shimada S, Ikawa N, Tanaka H et al (1993) Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation. CIRP Ann Manuf Technol 42:91–94CrossRef Shimada S, Ikawa N, Tanaka H et al (1993) Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation. CIRP Ann Manuf Technol 42:91–94CrossRef
9.
Zurück zum Zitat Shimada S, Ikawa N, Tanaka H et al (1994) Structure of micromachined surface simulated by molecular dynamics analysis. CIRP Ann Manuf Technol 43:51–54CrossRef Shimada S, Ikawa N, Tanaka H et al (1994) Structure of micromachined surface simulated by molecular dynamics analysis. CIRP Ann Manuf Technol 43:51–54CrossRef
10.
Zurück zum Zitat Komanduri R, Chandrasekaran N, Raff LM (1999) Orientation effects in nanometric cutting of single crystal materials: an MD simulation approach. Ann CIRP 48:67–72CrossRef Komanduri R, Chandrasekaran N, Raff LM (1999) Orientation effects in nanometric cutting of single crystal materials: an MD simulation approach. Ann CIRP 48:67–72CrossRef
11.
Zurück zum Zitat Komanduri R, Chandrasekaran N, Raff LM (2000) MD simulation of nanometric cutting of single crystal aluminum—effect of crystal orientation and direction of cutting. Wear 242(1/2):60–88CrossRef Komanduri R, Chandrasekaran N, Raff LM (2000) MD simulation of nanometric cutting of single crystal aluminum—effect of crystal orientation and direction of cutting. Wear 242(1/2):60–88CrossRef
13.
Zurück zum Zitat Fang FZ, Venkatesh VC (1998) Diamond cutting of silicon with nanometric finish. CIRP Ann Manuf Technol 47:45–49CrossRef Fang FZ, Venkatesh VC (1998) Diamond cutting of silicon with nanometric finish. CIRP Ann Manuf Technol 47:45–49CrossRef
14.
Zurück zum Zitat Fang FZ, Wu H, Liu YC (2005) Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tool Manuf 45:1681–1686CrossRef Fang FZ, Wu H, Liu YC (2005) Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tool Manuf 45:1681–1686CrossRef
15.
Zurück zum Zitat Chen J, Wang Q, Liang Y et al (2012) Nano-cutting molecular dynamics simulation of a copper single crystal. Procedia Eng 29:3478–3482CrossRef Chen J, Wang Q, Liang Y et al (2012) Nano-cutting molecular dynamics simulation of a copper single crystal. Procedia Eng 29:3478–3482CrossRef
16.
Zurück zum Zitat Chen J, Liang Y, Chen M et al (2009) A study of the subsurface damaged layers in nanoscratching. Int J Abrasive Technol 2:368–381CrossRef Chen J, Liang Y, Chen M et al (2009) A study of the subsurface damaged layers in nanoscratching. Int J Abrasive Technol 2:368–381CrossRef
17.
Zurück zum Zitat Liang YC, Chen JX, Chen MJ et al (2008) Integrated MD simulation of scratching and shearing of 3D nanostructure. Comput Mater Sci 43:1130–1140CrossRef Liang YC, Chen JX, Chen MJ et al (2008) Integrated MD simulation of scratching and shearing of 3D nanostructure. Comput Mater Sci 43:1130–1140CrossRef
18.
Zurück zum Zitat Wang Q, Bai Q, Chen J et al (2015) Subsurface defects structural evolution in nano-cutting of single crystal copper. Appl Surf Sci 344:38–46CrossRef Wang Q, Bai Q, Chen J et al (2015) Subsurface defects structural evolution in nano-cutting of single crystal copper. Appl Surf Sci 344:38–46CrossRef
21.
Zurück zum Zitat Fan P, Ding F, Luo X et al (2020) A simulated investigation of ductile response of GaAs in single-point diamond turning and experimental validation. Nanomanuf Metrol 3:239–250CrossRef Fan P, Ding F, Luo X et al (2020) A simulated investigation of ductile response of GaAs in single-point diamond turning and experimental validation. Nanomanuf Metrol 3:239–250CrossRef
22.
Zurück zum Zitat Xie WK, Fang FZ (2019) Cutting-based single atomic layer removal mechanism of monocrystalline copper: atomic sizing effect. Nanomanuf Metrol 2:241–252CrossRef Xie WK, Fang FZ (2019) Cutting-based single atomic layer removal mechanism of monocrystalline copper: atomic sizing effect. Nanomanuf Metrol 2:241–252CrossRef
23.
Zurück zum Zitat Kim YJ, Qaiser N, Han SM (2016) Time-dependent deformation of Sn micropillars. Mater Des 102:168–173CrossRef Kim YJ, Qaiser N, Han SM (2016) Time-dependent deformation of Sn micropillars. Mater Des 102:168–173CrossRef
25.
Zurück zum Zitat Kinoshita Y, Matsushima H, Ohno N (2012) Predicting active slip systems in β-Sn from ideal shear resistance. Model Simul Mater Sci Eng 20:35003–35011CrossRef Kinoshita Y, Matsushima H, Ohno N (2012) Predicting active slip systems in β-Sn from ideal shear resistance. Model Simul Mater Sci Eng 20:35003–35011CrossRef
26.
Zurück zum Zitat Kaira CS, Singh SS, Kirubanandham A et al (2016) Microscale deformation behavior of bicrystal boundaries in pure tin (Sn) using micropillar compression. Acta Mater 120:56–67CrossRef Kaira CS, Singh SS, Kirubanandham A et al (2016) Microscale deformation behavior of bicrystal boundaries in pure tin (Sn) using micropillar compression. Acta Mater 120:56–67CrossRef
27.
Zurück zum Zitat Philippi B, Kirchlechner C, Micha JS et al (2016) Size and orientation dependent mechanical behavior of body-centered tetragonal Sn at 0.6 of the melting temperature. Acta Mater 115:76–82CrossRef Philippi B, Kirchlechner C, Micha JS et al (2016) Size and orientation dependent mechanical behavior of body-centered tetragonal Sn at 0.6 of the melting temperature. Acta Mater 115:76–82CrossRef
28.
Zurück zum Zitat Vallabhaneni R, Izadi E, Mayer CR et al (2017) In situ tensile testing of tin (Sn) whiskers in a focused ion beam (FIB)/scanning electron microscope (SEM). Microelectron Reliab 79:314–320CrossRef Vallabhaneni R, Izadi E, Mayer CR et al (2017) In situ tensile testing of tin (Sn) whiskers in a focused ion beam (FIB)/scanning electron microscope (SEM). Microelectron Reliab 79:314–320CrossRef
32.
Zurück zum Zitat Goel S, Luo X, Reuben RL (2013) Wear mechanism of diamond tools against single crystal silicon in single point diamond turning process. Tribol Int 57:272–281CrossRef Goel S, Luo X, Reuben RL (2013) Wear mechanism of diamond tools against single crystal silicon in single point diamond turning process. Tribol Int 57:272–281CrossRef
33.
Zurück zum Zitat Xu FF, Fang FZ, Zhang XD (2017) Hard particle effect on surface generation in nano-cutting. Appl Surf Sci 425:1020–1027CrossRef Xu FF, Fang FZ, Zhang XD (2017) Hard particle effect on surface generation in nano-cutting. Appl Surf Sci 425:1020–1027CrossRef
34.
Zurück zum Zitat Baskes MI (1992) Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B 46:2727–2742CrossRef Baskes MI (1992) Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B 46:2727–2742CrossRef
35.
Zurück zum Zitat Ravelo R, Baskes M (1997) Equilibrium and thermodynamic properties of grey, white, and liquid tin. Phys Rev Lett 79:2482–2485CrossRef Ravelo R, Baskes M (1997) Equilibrium and thermodynamic properties of grey, white, and liquid tin. Phys Rev Lett 79:2482–2485CrossRef
38.
Zurück zum Zitat Yi L, Xiang M, Zeng X et al (2014) Molecular dynamics study of the micro-spallation of single crystal tin. Comput Mater Sci 95:89–98CrossRef Yi L, Xiang M, Zeng X et al (2014) Molecular dynamics study of the micro-spallation of single crystal tin. Comput Mater Sci 95:89–98CrossRef
40.
Zurück zum Zitat Kuo CL, Clancy P (2004) MEAM molecular dynamics study of a gold thin film on a silicon substrate. Surf Sci 551:39–58CrossRef Kuo CL, Clancy P (2004) MEAM molecular dynamics study of a gold thin film on a silicon substrate. Surf Sci 551:39–58CrossRef
41.
Zurück zum Zitat Sellers MS, Schultz AJ, Basaran C et al (2010) Atomistic modeling of β-Sn surface energies and adatom diffusivity. Appl Surf Sci 256:4402–4407CrossRef Sellers MS, Schultz AJ, Basaran C et al (2010) Atomistic modeling of β-Sn surface energies and adatom diffusivity. Appl Surf Sci 256:4402–4407CrossRef
45.
Zurück zum Zitat Harbin, (2013) Analytical bond-order potential for Sn. Acta Phys Sin 62:526–532 Harbin, (2013) Analytical bond-order potential for Sn. Acta Phys Sin 62:526–532
46.
Zurück zum Zitat Wang JS, Zhang XD, Fang FZ et al (2018) A numerical study on the material removal and phase transformation in the nanometric cutting of silicon. Appl Surf Sci 455:608–615CrossRef Wang JS, Zhang XD, Fang FZ et al (2018) A numerical study on the material removal and phase transformation in the nanometric cutting of silicon. Appl Surf Sci 455:608–615CrossRef
47.
Zurück zum Zitat Chavoshi SZ, Xu S, Luo X (2016) Dislocation-mediated plasticity in silicon during nanometric cutting: a molecular dynamics simulation study. Mater Sci Semicon Proc 51:60–70CrossRef Chavoshi SZ, Xu S, Luo X (2016) Dislocation-mediated plasticity in silicon during nanometric cutting: a molecular dynamics simulation study. Mater Sci Semicon Proc 51:60–70CrossRef
48.
Zurück zum Zitat Fang FZ, Xu FF, Lai M (2015) Size effect in material removal by cutting at nano scale. Int J Adv Manuf Technol 80:591–598CrossRef Fang FZ, Xu FF, Lai M (2015) Size effect in material removal by cutting at nano scale. Int J Adv Manuf Technol 80:591–598CrossRef
49.
Zurück zum Zitat Lai M, Zhang XD, Fang FZ et al (2013) Study on nanometric cutting of germanium by molecular dynamics simulation. Nanoscale Res Lett 8:1–10CrossRef Lai M, Zhang XD, Fang FZ et al (2013) Study on nanometric cutting of germanium by molecular dynamics simulation. Nanoscale Res Lett 8:1–10CrossRef
Metadaten
Titel
Molecular dynamics study on surface formation and phase transformation in nanometric cutting of β-Sn
verfasst von
Zhi-Fu Xue
Min Lai
Fei-Fei Xu
Feng-Zhou Fang
Publikationsdatum
13.05.2022
Verlag
Shanghai University
Erschienen in
Advances in Manufacturing / Ausgabe 3/2022
Print ISSN: 2095-3127
Elektronische ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-022-00399-w

Weitere Artikel der Ausgabe 3/2022

Advances in Manufacturing 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.