Skip to main content
Erschienen in: Topics in Catalysis 9-11/2018

11.04.2018 | Original Paper

Molecular Interactions Between Silver Nanoparticles and Model Cell Membranes

verfasst von: Peipei Hu, Xiaoxian Zhang, Yaoxin Li, Cayla Pichan, Zhan Chen

Erschienen in: Topics in Catalysis | Ausgabe 9-11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Silver (Ag) nanoparticles (NPs) are well known for their antibacterial properties. However, concerns have been raised on their possible toxicity to humans. This work is aimed to understand molecular interactions between Ag NPs and model mammalian cell membranes. Sum frequency generation (SFG) vibrational spectroscopy was used to study such interactions, supplemented by attenuated total reflectance–Fourier transform infrared spectroscopy (ATR–FTIR). Based on the SFG and ATR–FTIR results, it was found that Ag NPs could induce flip-flop of substrate supported lipid bilayers serving as model mammalian cell membranes. The Ag NPs could accumulate onto the model cell membrane and may aggregate. The Ag NP–model cell membrane interactions depend on the Ag NP solution concentration. At low Ag NP solution concentration, lipid flip-flop was observed. At higher Ag NP concentrations, Ag NPs caused lipid flip-flop faster and might aggregate. Therefore, the lipid flip-flop rates and Ag NP accumulation/aggregation rates are directly related to the Ag NP concentration of the subphase in contact with the lipid bilayer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kuo C-W, Chueh D-Y, Singh N, Chien F-C, Chen P (2011) Targeted nuclear delivery using peptide-coated quantum dots. Bioconjugate Chem 22(6):1073–1080CrossRef Kuo C-W, Chueh D-Y, Singh N, Chien F-C, Chen P (2011) Targeted nuclear delivery using peptide-coated quantum dots. Bioconjugate Chem 22(6):1073–1080CrossRef
2.
Zurück zum Zitat De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133CrossRef De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133CrossRef
3.
Zurück zum Zitat Fang B, Luo J, Chen Y, Wanjala BN, Loukrakpam R, Hong J, Yin J, Hu X, Hu P, Zhong CJ (2011) Nanoengineered PtVFe/C cathode electrocatalysts in PEM fuel cells: catalyst activity and stability. ChemCatChem 3(3):583–593CrossRef Fang B, Luo J, Chen Y, Wanjala BN, Loukrakpam R, Hong J, Yin J, Hu X, Hu P, Zhong CJ (2011) Nanoengineered PtVFe/C cathode electrocatalysts in PEM fuel cells: catalyst activity and stability. ChemCatChem 3(3):583–593CrossRef
4.
Zurück zum Zitat Yin J, Hu P, Luo J, Wang L, Cohen MF, Zhong C-J (2011) Molecularly mediated thin film assembly of nanoparticles on flexible devices: electrical conductivity versus device strains in different gas/vapor environment. ACS Nano 5(8):6516–6526CrossRefPubMed Yin J, Hu P, Luo J, Wang L, Cohen MF, Zhong C-J (2011) Molecularly mediated thin film assembly of nanoparticles on flexible devices: electrical conductivity versus device strains in different gas/vapor environment. ACS Nano 5(8):6516–6526CrossRefPubMed
5.
Zurück zum Zitat Yu F, Ma J, Wang J, Zhang M, Zheng J (2016) Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution. Chemosphere 146:162–172CrossRefPubMed Yu F, Ma J, Wang J, Zhang M, Zheng J (2016) Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution. Chemosphere 146:162–172CrossRefPubMed
6.
Zurück zum Zitat Zhao X, Tapec-Dytioco R, Tan W (2003) Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J Am Chem Soc 125(38):11474–11475CrossRefPubMed Zhao X, Tapec-Dytioco R, Tan W (2003) Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J Am Chem Soc 125(38):11474–11475CrossRefPubMed
7.
Zurück zum Zitat Bamrungsap S, Zhao Z, Chen T, Wang L, Li C, Fu T, Tan W (2012) Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine 7(8):1253–1271CrossRefPubMed Bamrungsap S, Zhao Z, Chen T, Wang L, Li C, Fu T, Tan W (2012) Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine 7(8):1253–1271CrossRefPubMed
8.
Zurück zum Zitat Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43(3):744–764CrossRefPubMed Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43(3):744–764CrossRefPubMed
9.
Zurück zum Zitat Zhang L, Xu J, Mi L, Gong H, Jiang S, Yu Q (2012) Multifunctional magnetic–plasmonic nanoparticles for fast concentration and sensitive detection of bacteria using SERS. Biosens. Bioelectron 31(1):130–136CrossRefPubMed Zhang L, Xu J, Mi L, Gong H, Jiang S, Yu Q (2012) Multifunctional magnetic–plasmonic nanoparticles for fast concentration and sensitive detection of bacteria using SERS. Biosens. Bioelectron 31(1):130–136CrossRefPubMed
10.
Zurück zum Zitat Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nanotechnol Biol Med 6(4):570–574CrossRef Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nanotechnol Biol Med 6(4):570–574CrossRef
11.
Zurück zum Zitat Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry—recent developments, risks and regulation. Trends Food Sci Technol 24(1):30–46CrossRef Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry—recent developments, risks and regulation. Trends Food Sci Technol 24(1):30–46CrossRef
12.
Zurück zum Zitat Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390(2):396–409CrossRefPubMed Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390(2):396–409CrossRefPubMed
13.
Zurück zum Zitat Walser T, Demou E, Lang DJ, Hellweg S (2011) Prospective environmental life cycle assessment of nanosilver T-shirts. Environ Sci Technol 45(10):4570–4578CrossRefPubMedPubMedCentral Walser T, Demou E, Lang DJ, Hellweg S (2011) Prospective environmental life cycle assessment of nanosilver T-shirts. Environ Sci Technol 45(10):4570–4578CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Lansdown AB (2004) A review of the use of silver in wound care: facts and fallacies. Br J Nurs 13(6):S6–S19CrossRefPubMed Lansdown AB (2004) A review of the use of silver in wound care: facts and fallacies. Br J Nurs 13(6):S6–S19CrossRefPubMed
15.
Zurück zum Zitat Cao H, Liu X (2010) Silver nanoparticles-modified films versus biomedical device-associated infections. Wiley Interdiscip Rev 2(6):670–684 Cao H, Liu X (2010) Silver nanoparticles-modified films versus biomedical device-associated infections. Wiley Interdiscip Rev 2(6):670–684
16.
Zurück zum Zitat Reidy B, Haase A, Luch A, Dawson KA, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6(6):2295–2350CrossRefPubMedPubMedCentral Reidy B, Haase A, Luch A, Dawson KA, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6(6):2295–2350CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MM (2014) Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomed 9:2399 Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MM (2014) Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomed 9:2399
18.
Zurück zum Zitat Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M (2011) Silver nanoparticles as potential antiviral agents. Molecules 16(10):8894–8918CrossRefPubMed Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M (2011) Silver nanoparticles as potential antiviral agents. Molecules 16(10):8894–8918CrossRefPubMed
19.
Zurück zum Zitat Murphy M, Ting K, Zhang X, Soo C, Zheng Z (2015) Current development of silver nanoparticle preparation, investigation, and application in the field of medicine. J Nanomater 2015:5CrossRef Murphy M, Ting K, Zhang X, Soo C, Zheng Z (2015) Current development of silver nanoparticle preparation, investigation, and application in the field of medicine. J Nanomater 2015:5CrossRef
20.
Zurück zum Zitat Wong KK, Liu X (2010) Silver nanoparticles—the real “silver bullet” in clinical medicine? MedChemComm 1(2):125–131CrossRef Wong KK, Liu X (2010) Silver nanoparticles—the real “silver bullet” in clinical medicine? MedChemComm 1(2):125–131CrossRef
21.
Zurück zum Zitat Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588CrossRefPubMed Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588CrossRefPubMed
22.
Zurück zum Zitat Ovington LG (2004) The truth about silver. Ostomy/Wound Manag 50(9A Suppl):1S–10S Ovington LG (2004) The truth about silver. Ostomy/Wound Manag 50(9A Suppl):1S–10S
23.
Zurück zum Zitat Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(1):95–101CrossRef Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(1):95–101CrossRef
24.
Zurück zum Zitat AshaRani P, Low Kah Mun G, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290CrossRef AshaRani P, Low Kah Mun G, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290CrossRef
25.
Zurück zum Zitat Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43(19):7285–7290CrossRefPubMed Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43(19):7285–7290CrossRefPubMed
26.
Zurück zum Zitat Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11(1):1CrossRef Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11(1):1CrossRef
27.
Zurück zum Zitat Santra TS, Tseng F-GK, Barik TK (2014) Biosynthesis of silver and gold nanoparticles for potential biomedical applications—a brief review. J Nanopharm Drug Deliv 2(4):249–265CrossRef Santra TS, Tseng F-GK, Barik TK (2014) Biosynthesis of silver and gold nanoparticles for potential biomedical applications—a brief review. J Nanopharm Drug Deliv 2(4):249–265CrossRef
28.
Zurück zum Zitat Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182CrossRefPubMed Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182CrossRefPubMed
29.
Zurück zum Zitat Milić M, Leitinger G, Pavičić I, Zebić Avdičević M, Dobrović S, Goessler W, Vinković Vrček I (2015) Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol 35(6):581–592CrossRefPubMed Milić M, Leitinger G, Pavičić I, Zebić Avdičević M, Dobrović S, Goessler W, Vinković Vrček I (2015) Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol 35(6):581–592CrossRefPubMed
30.
Zurück zum Zitat Genter MB, Newman NC, Shertzer HG, Ali SF, Bolon B (2012) Distribution and systemic effects of intranasally administered 25 nm silver nanoparticles in adult mice. Toxicol Pathol 40(7):1004–1013CrossRefPubMed Genter MB, Newman NC, Shertzer HG, Ali SF, Bolon B (2012) Distribution and systemic effects of intranasally administered 25 nm silver nanoparticles in adult mice. Toxicol Pathol 40(7):1004–1013CrossRefPubMed
31.
32.
Zurück zum Zitat Söderstjerna E, Bauer P, Cedervall T, Abdshill H, Johansson F, Johansson UE (2014) Silver and gold nanoparticles exposure to in vitro cultured retina—studies on nanoparticle internalization, apoptosis, oxidative stress, glial-and microglial activity. PLoS ONE 9(8):e105359CrossRefPubMedPubMedCentral Söderstjerna E, Bauer P, Cedervall T, Abdshill H, Johansson F, Johansson UE (2014) Silver and gold nanoparticles exposure to in vitro cultured retina—studies on nanoparticle internalization, apoptosis, oxidative stress, glial-and microglial activity. PLoS ONE 9(8):e105359CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Sambale F, Wagner S, Stahl F, Khaydarov R, Scheper T, Bahnemann D (2015) Investigations of the toxic effect of silver nanoparticles on mammalian cell lines. J Nanomater 2015:6 Sambale F, Wagner S, Stahl F, Khaydarov R, Scheper T, Bahnemann D (2015) Investigations of the toxic effect of silver nanoparticles on mammalian cell lines. J Nanomater 2015:6
34.
Zurück zum Zitat Lambert AG, Davies PB, Neivandt DJ (2005) Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. Appl Spectrosc Rev 40(2):103–145CrossRef Lambert AG, Davies PB, Neivandt DJ (2005) Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. Appl Spectrosc Rev 40(2):103–145CrossRef
35.
Zurück zum Zitat Chen X, Chen Z (2006) SFG studies on interactions between antimicrobial peptides and supported lipid bilayers. Biochim Biophys Acta 1758(9):1257–1273CrossRefPubMed Chen X, Chen Z (2006) SFG studies on interactions between antimicrobial peptides and supported lipid bilayers. Biochim Biophys Acta 1758(9):1257–1273CrossRefPubMed
36.
Zurück zum Zitat Ye S, Nguyen KT, Le Clair SV, Chen Z (2009) In situ molecular level studies on membrane related peptides and proteins in real time using sum frequency generation vibrational spectroscopy. J Struct Biol 168(1):61–77CrossRefPubMedPubMedCentral Ye S, Nguyen KT, Le Clair SV, Chen Z (2009) In situ molecular level studies on membrane related peptides and proteins in real time using sum frequency generation vibrational spectroscopy. J Struct Biol 168(1):61–77CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Zhu X, Suhr H, Shen Y (1987) Surface vibrational spectroscopy by infrared-visible sum frequency generation. Phys Rev B 35(6):3047CrossRef Zhu X, Suhr H, Shen Y (1987) Surface vibrational spectroscopy by infrared-visible sum frequency generation. Phys Rev B 35(6):3047CrossRef
38.
Zurück zum Zitat Eisenthal K (1996) Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy. Chem Rev 96(4):1343–1360CrossRefPubMed Eisenthal K (1996) Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy. Chem Rev 96(4):1343–1360CrossRefPubMed
39.
Zurück zum Zitat Gracias D, Chen Z, Shen Y, Somorjai G (1999) Molecular characterization of polymer and polymer blend surfaces. Combined sum frequency generation surface vibrational spectroscopy and scanning force microscopy studies. Acc Chem Res 32(11):930–940CrossRef Gracias D, Chen Z, Shen Y, Somorjai G (1999) Molecular characterization of polymer and polymer blend surfaces. Combined sum frequency generation surface vibrational spectroscopy and scanning force microscopy studies. Acc Chem Res 32(11):930–940CrossRef
40.
Zurück zum Zitat Chen Z, Shen Y, Somorjai GA (2002) Studies of polymer surfaces by sum frequency generation vibrational spectroscopy. Annu Rev Phys Chem 53(1):437–465CrossRefPubMed Chen Z, Shen Y, Somorjai GA (2002) Studies of polymer surfaces by sum frequency generation vibrational spectroscopy. Annu Rev Phys Chem 53(1):437–465CrossRefPubMed
41.
Zurück zum Zitat Richmond G (2002) Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy. Chem Rev 102(8):2693–2724CrossRefPubMed Richmond G (2002) Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy. Chem Rev 102(8):2693–2724CrossRefPubMed
42.
Zurück zum Zitat Vidal F, Tadjeddine A (2005) Sum-frequency generation spectroscopy of interfaces. Rep Prog Phys 68(5):1095CrossRef Vidal F, Tadjeddine A (2005) Sum-frequency generation spectroscopy of interfaces. Rep Prog Phys 68(5):1095CrossRef
43.
Zurück zum Zitat Ye H, Abu-Akeel A, Huang J, Katz HE, Gracias DH (2006) Probing organic field effect transistors in situ during operation using SFG. J Am Chem Soc 128(20):6528–6529CrossRefPubMed Ye H, Abu-Akeel A, Huang J, Katz HE, Gracias DH (2006) Probing organic field effect transistors in situ during operation using SFG. J Am Chem Soc 128(20):6528–6529CrossRefPubMed
44.
Zurück zum Zitat Li Q, Kuo CW, Yang Z, Chen P, Chou KC (2009) Surface-enhanced IR–visible sum frequency generation vibrational spectroscopy. Phys Chem Chem Phys 11(18):3436–3442CrossRefPubMed Li Q, Kuo CW, Yang Z, Chen P, Chou KC (2009) Surface-enhanced IR–visible sum frequency generation vibrational spectroscopy. Phys Chem Chem Phys 11(18):3436–3442CrossRefPubMed
45.
Zurück zum Zitat Yang Z, Li Q, Chou KC (2009) Structures of water molecules at the interfaces of aqueous salt solutions and silica: cation effects. J Phys Chem C 113(19):8201–8205CrossRef Yang Z, Li Q, Chou KC (2009) Structures of water molecules at the interfaces of aqueous salt solutions and silica: cation effects. J Phys Chem C 113(19):8201–8205CrossRef
46.
Zurück zum Zitat Hu D, Chou KC (2014) Re-evaluating the surface tension analysis of polyelectrolyte-surfactant mixtures using phase-sensitive sum frequency generation spectroscopy. J Am Chem Soc 136(43):15114–15117CrossRefPubMed Hu D, Chou KC (2014) Re-evaluating the surface tension analysis of polyelectrolyte-surfactant mixtures using phase-sensitive sum frequency generation spectroscopy. J Am Chem Soc 136(43):15114–15117CrossRefPubMed
47.
Zurück zum Zitat Shen Y-R (2016) Fundamentals of sum-frequency spectroscopy. Cambridge University Press, CambridgeCrossRef Shen Y-R (2016) Fundamentals of sum-frequency spectroscopy. Cambridge University Press, CambridgeCrossRef
49.
Zurück zum Zitat Zhang C, Wu F-G, Hu P, Chen Z (2014) Interaction of polyethylenimine with model cell membranes studied by linear and nonlinear spectroscopic techniques. J Phys Chem C 118(23):12195–12205CrossRef Zhang C, Wu F-G, Hu P, Chen Z (2014) Interaction of polyethylenimine with model cell membranes studied by linear and nonlinear spectroscopic techniques. J Phys Chem C 118(23):12195–12205CrossRef
50.
Zurück zum Zitat Wu F-G, Yang P, Zhang C, Han X, Song M, Chen Z (2014) Investigation of drug-model cell membrane interactions using sum frequency generation vibrational spectroscopy: a case study of chlorpromazine. J Phys Chem C 118(31):17538–17548CrossRef Wu F-G, Yang P, Zhang C, Han X, Song M, Chen Z (2014) Investigation of drug-model cell membrane interactions using sum frequency generation vibrational spectroscopy: a case study of chlorpromazine. J Phys Chem C 118(31):17538–17548CrossRef
51.
Zurück zum Zitat Hu P, Zhang X, Zhang C, Chen Z (2015) Molecular interactions between gold nanoparticles and model cell membranes. Phys Chem Chem Phys 17(15):9873–9884CrossRefPubMed Hu P, Zhang X, Zhang C, Chen Z (2015) Molecular interactions between gold nanoparticles and model cell membranes. Phys Chem Chem Phys 17(15):9873–9884CrossRefPubMed
52.
Zurück zum Zitat Zhang C, Jasensky J, Wu J, Chen Z (2014) Combining surface sensitive vibrational spectroscopy and fluorescence microscopy to study biological interfaces. SPIE BiOS, International Society for Optics and Photonics, pp 894712–894712-8 Zhang C, Jasensky J, Wu J, Chen Z (2014) Combining surface sensitive vibrational spectroscopy and fluorescence microscopy to study biological interfaces. SPIE BiOS, International Society for Optics and Photonics, pp 894712–894712-8
53.
Zurück zum Zitat Liu J, Conboy JC (2005) 1, 2-diacyl-phosphatidylcholine flip-flop measured directly by sum-frequency vibrational spectroscopy. Biophys J 89(4):2522–2532CrossRefPubMedPubMedCentral Liu J, Conboy JC (2005) 1, 2-diacyl-phosphatidylcholine flip-flop measured directly by sum-frequency vibrational spectroscopy. Biophys J 89(4):2522–2532CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Anglin TC, Conboy JC (2009) Kinetics and thermodynamics of flip-flop in binary phospholipid membranes measured by sum-frequency vibrational spectroscopy. Biochemistry 48(43):10220–10234CrossRefPubMed Anglin TC, Conboy JC (2009) Kinetics and thermodynamics of flip-flop in binary phospholipid membranes measured by sum-frequency vibrational spectroscopy. Biochemistry 48(43):10220–10234CrossRefPubMed
55.
Zurück zum Zitat Nam J, Won N, Jin H, Chung H, Kim S (2009) pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc 131(38):13639–13645CrossRefPubMed Nam J, Won N, Jin H, Chung H, Kim S (2009) pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc 131(38):13639–13645CrossRefPubMed
56.
Zurück zum Zitat Liu J, Conboy JC (2004) Direct measurement of the transbilayer movement of phospholipids by sum-frequency vibrational spectroscopy. J Am Chem Soc 126(27):8376–8377CrossRefPubMed Liu J, Conboy JC (2004) Direct measurement of the transbilayer movement of phospholipids by sum-frequency vibrational spectroscopy. J Am Chem Soc 126(27):8376–8377CrossRefPubMed
57.
Zurück zum Zitat Yang P, Ramamoorthy A, Chen Z (2011) Membrane orientation of MSI-78 measured by sum frequency generation vibrational spectroscopy. Langmuir 27(12):7760–7767CrossRefPubMedPubMedCentral Yang P, Ramamoorthy A, Chen Z (2011) Membrane orientation of MSI-78 measured by sum frequency generation vibrational spectroscopy. Langmuir 27(12):7760–7767CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Chen X, Wang J, Kristalyn CB, Chen Z (2007) Real-time structural investigation of a lipid bilayer during its interaction with melittin using sum frequency generation vibrational spectroscopy. Biophys J 93(3):866–875CrossRefPubMedPubMedCentral Chen X, Wang J, Kristalyn CB, Chen Z (2007) Real-time structural investigation of a lipid bilayer during its interaction with melittin using sum frequency generation vibrational spectroscopy. Biophys J 93(3):866–875CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Parveen A, Rao S (2015) Cytotoxicity and genotoxicity of biosynthesized gold and silver nanoparticles on human cancer cell lines. J Cluster Sci 26(3):775–788CrossRef Parveen A, Rao S (2015) Cytotoxicity and genotoxicity of biosynthesized gold and silver nanoparticles on human cancer cell lines. J Cluster Sci 26(3):775–788CrossRef
60.
Zurück zum Zitat Pascarelli NA, Moretti E, Terzuoli G, Lamboglia A, Renieri T, Fioravanti A, Collodel G (2013) Effects of gold and silver nanoparticles in cultured human osteoarthritic chondrocytes. J Appl Toxicol 33(12):1506–1513CrossRefPubMed Pascarelli NA, Moretti E, Terzuoli G, Lamboglia A, Renieri T, Fioravanti A, Collodel G (2013) Effects of gold and silver nanoparticles in cultured human osteoarthritic chondrocytes. J Appl Toxicol 33(12):1506–1513CrossRefPubMed
61.
Zurück zum Zitat Moretti E, Terzuoli G, Renieri T, Iacoponi F, Castellini C, Giordano C, Collodel G (2013) In vitro effect of gold and silver nanoparticles on human spermatozoa. Andrologia 45(6):392–396CrossRefPubMed Moretti E, Terzuoli G, Renieri T, Iacoponi F, Castellini C, Giordano C, Collodel G (2013) In vitro effect of gold and silver nanoparticles on human spermatozoa. Andrologia 45(6):392–396CrossRefPubMed
62.
Zurück zum Zitat Lis D, Cecchet F (2014) Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity. Beilstein J Nanotechnol 5(1):2275–2292CrossRefPubMedPubMedCentral Lis D, Cecchet F (2014) Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity. Beilstein J Nanotechnol 5(1):2275–2292CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Chen Z, Zhang Z (1991) Enhanced surface sum frequency generation from LB layer covered silver film. J Appl Phys 69(11):7406–7410CrossRef Chen Z, Zhang Z (1991) Enhanced surface sum frequency generation from LB layer covered silver film. J Appl Phys 69(11):7406–7410CrossRef
64.
Zurück zum Zitat Alieva E, Petrov YE, Yakovlev V, Eliel E, Van Der Ham E, Vrehen Q, Van Der Meer A, Sychugov V (1997) Giant enhancement of sum-frequency generation upon excitation of a surface plasmon-polariton. J Exp Theor Phys Lett 66(9):609–613CrossRef Alieva E, Petrov YE, Yakovlev V, Eliel E, Van Der Ham E, Vrehen Q, Van Der Meer A, Sychugov V (1997) Giant enhancement of sum-frequency generation upon excitation of a surface plasmon-polariton. J Exp Theor Phys Lett 66(9):609–613CrossRef
65.
Zurück zum Zitat Goreham RV, Thompson VC, Samura Y, Gibson CT, Shapter JG, Köper I (2015) Interaction of silver nanoparticles with tethered bilayer lipid membranes. Langmuir 31(21):5868–5874CrossRefPubMed Goreham RV, Thompson VC, Samura Y, Gibson CT, Shapter JG, Köper I (2015) Interaction of silver nanoparticles with tethered bilayer lipid membranes. Langmuir 31(21):5868–5874CrossRefPubMed
66.
Zurück zum Zitat Pluchery O, Humbert C, Valamanesh M, Lacaze E, Busson B (2009) Enhanced detection of thiophenol adsorbed on gold nanoparticles by SFG and DFG nonlinear optical spectroscopy. Phys Chem Chem Phys 11(35):7729–7737CrossRefPubMed Pluchery O, Humbert C, Valamanesh M, Lacaze E, Busson B (2009) Enhanced detection of thiophenol adsorbed on gold nanoparticles by SFG and DFG nonlinear optical spectroscopy. Phys Chem Chem Phys 11(35):7729–7737CrossRefPubMed
67.
Zurück zum Zitat Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531CrossRefPubMed Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531CrossRefPubMed
68.
Zurück zum Zitat Park E-J, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30(2):162–168CrossRefPubMed Park E-J, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30(2):162–168CrossRefPubMed
69.
Zurück zum Zitat Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 102(27):9469–9474CrossRefPubMed Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 102(27):9469–9474CrossRefPubMed
70.
Zurück zum Zitat Hu P, Quan W, Liu B, Pichan C, Chen Z (2016) Molecular interactions between gold nanoparticles and model cell membranes: a study of nanoparticle surface charge effect. J Phys Chem C 120(39):22718–22729CrossRef Hu P, Quan W, Liu B, Pichan C, Chen Z (2016) Molecular interactions between gold nanoparticles and model cell membranes: a study of nanoparticle surface charge effect. J Phys Chem C 120(39):22718–22729CrossRef
Metadaten
Titel
Molecular Interactions Between Silver Nanoparticles and Model Cell Membranes
verfasst von
Peipei Hu
Xiaoxian Zhang
Yaoxin Li
Cayla Pichan
Zhan Chen
Publikationsdatum
11.04.2018
Verlag
Springer US
Erschienen in
Topics in Catalysis / Ausgabe 9-11/2018
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-018-0926-1

Weitere Artikel der Ausgabe 9-11/2018

Topics in Catalysis 9-11/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.