Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 8/2012

01.08.2012

Molecular-Level Simulations of Shock Generation and Propagation in Soda-Lime Glass

verfasst von: M. Grujicic, W. C. Bell, B. Pandurangan, B. A. Cheeseman, C. Fountzoulas, P. Patel

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 8/2012

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A non-equilibrium molecular dynamics method is employed to study the mechanical response of soda-lime glass (a material commonly used in transparent armor applications) when subjected to the loading conditions associated with the generation and propagation of planar shock waves. Specific attention is given to the identification and characterization of various (inelastic-deformation and energy-dissipation) molecular-level phenomena and processes taking place at, or in the vicinity of, the shock front. The results obtained revealed that the shock loading causes a 2-4% (shock strength-dependent) density increase. In addition, an increase in the average coordination number of the silicon atoms is observed along with the creation of smaller Si-O rings. These processes are associated with substantial energy absorption and dissipation and are believed to greatly influence the blast/ballistic impact mitigation potential of soda-lime glass. The present work was also aimed at the determination of the shock Hugoniot (i.e., a set of axial stress vs. density/specific-volume vs. internal energy vs. particle velocity vs. temperature) material states obtained in soda-lime glass after the passage of a shock wave of a given strength (as quantified by the shock speed). The availability of a shock Hugoniot is critical for construction of a high deformation-rate, large-strain, high pressure material model which can be used within a continuum-level computational analysis to capture the response of a soda-lime glass based laminated transparent armor structure (e.g., a military vehicle windshield, door window, etc.) to blast/ballistic impact loading.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. Strassburger, P. Patel, W. McCauley, and D.W. Templeton, Visualization of Wave Propagation and Impact Damage in a Polycrystalline Transparent Ceramic-AlON, Proceedings of the 22nd International Symposium on Ballistics, November 2005, Vancouver, Canada E. Strassburger, P. Patel, W. McCauley, and D.W. Templeton, Visualization of Wave Propagation and Impact Damage in a Polycrystalline Transparent Ceramic-AlON, Proceedings of the 22nd International Symposium on Ballistics, November 2005, Vancouver, Canada
2.
Zurück zum Zitat AMPTIAC Quarterly, Army Materials Research: Transforming Land Combat Through New Technologies, AMPTIAC Quart., 2004, 8(4), p 2–5 AMPTIAC Quarterly, Army Materials Research: Transforming Land Combat Through New Technologies, AMPTIAC Quart., 2004, 8(4), p 2–5
3.
Zurück zum Zitat M. Grujicic, B. Pandurangan, N. Coutris, B.A. Cheeseman, C. Fountzoulas, P. Patel, and E. Strassburger, A Ballistic Material Model for Starphire®, A Soda-lime Transparent Armor Glass, Mater. Sci. Eng. A, 2008, 492(1), p 397–411 M. Grujicic, B. Pandurangan, N. Coutris, B.A. Cheeseman, C. Fountzoulas, P. Patel, and E. Strassburger, A Ballistic Material Model for Starphire®, A Soda-lime Transparent Armor Glass, Mater. Sci. Eng. A, 2008, 492(1), p 397–411
4.
Zurück zum Zitat M. Grujicic, B. Pandurangan, W.C. Bell, N. Coutris, B.A. Cheeseman, C. Fountzoulas, and P. Patel, An Improved Mechanical Material Model for Ballistic Soda-Lime Glass, J. Mater. Eng. Perform., 2009, 18(8), p 1012–1028CrossRef M. Grujicic, B. Pandurangan, W.C. Bell, N. Coutris, B.A. Cheeseman, C. Fountzoulas, and P. Patel, An Improved Mechanical Material Model for Ballistic Soda-Lime Glass, J. Mater. Eng. Perform., 2009, 18(8), p 1012–1028CrossRef
5.
Zurück zum Zitat M. Grujicic, B. Pandurangan, N. Coutris, B.A. Cheeseman, C. Fountzoulas, and P. Patel, A Simple Ballistic Material Model for Soda-Lime Glass, Int. J. Impact Eng., 2009, 36, p 386–401CrossRef M. Grujicic, B. Pandurangan, N. Coutris, B.A. Cheeseman, C. Fountzoulas, and P. Patel, A Simple Ballistic Material Model for Soda-Lime Glass, Int. J. Impact Eng., 2009, 36, p 386–401CrossRef
6.
Zurück zum Zitat M. Grujicic, W.C. Bell, P.S. Glomski, B. Pandurangan, B.A. Cheeseman, C. Fountzoulas, P. Patel, D.W. Templeton, and K.D. Bishnoi, Multi-length Scale Modeling of High-pressure Induced Phase Transformations in Soda-lime Glass, J. Mater. Eng. Perform., 2010, 20(7), p 1144–1156 M. Grujicic, W.C. Bell, P.S. Glomski, B. Pandurangan, B.A. Cheeseman, C. Fountzoulas, P. Patel, D.W. Templeton, and K.D. Bishnoi, Multi-length Scale Modeling of High-pressure Induced Phase Transformations in Soda-lime Glass, J. Mater. Eng. Perform., 2010, 20(7), p 1144–1156
7.
Zurück zum Zitat L.V. Woodcock, C.A. Angell, and P. Cheeseman, Molecular Dynamics Studies of the Vitreous State: Simple Ionic Systems and Silica, J. Chem. Phys., 1976, 65, p 1565–1577CrossRef L.V. Woodcock, C.A. Angell, and P. Cheeseman, Molecular Dynamics Studies of the Vitreous State: Simple Ionic Systems and Silica, J. Chem. Phys., 1976, 65, p 1565–1577CrossRef
8.
Zurück zum Zitat R.G.D. Valle and E. Venuti, High-Pressure Densification of Silica Glass: A Molecular-dynamics Simulation, Phys. Rev. B, 1996, 54(6), p 3809–3816CrossRef R.G.D. Valle and E. Venuti, High-Pressure Densification of Silica Glass: A Molecular-dynamics Simulation, Phys. Rev. B, 1996, 54(6), p 3809–3816CrossRef
9.
Zurück zum Zitat K. Trachenko and M.T. Dove, Densification of Silica Glass Under Pressure, J. Phys.: Condens. Matter, 2002, 14, p 7449–7459CrossRef K. Trachenko and M.T. Dove, Densification of Silica Glass Under Pressure, J. Phys.: Condens. Matter, 2002, 14, p 7449–7459CrossRef
10.
Zurück zum Zitat Y. Liang, C.R. Miranda, and S. Scandolo, Mechanical Strength and Coordinate Defects in Compressed Silica Glass: Molecular Dynamics Simulations, Phys. Rev. B, 2007, 75, p 024205CrossRef Y. Liang, C.R. Miranda, and S. Scandolo, Mechanical Strength and Coordinate Defects in Compressed Silica Glass: Molecular Dynamics Simulations, Phys. Rev. B, 2007, 75, p 024205CrossRef
11.
Zurück zum Zitat B. Nghiem, PhD thesis, University of Paris 6, France 1998 B. Nghiem, PhD thesis, University of Paris 6, France 1998
12.
Zurück zum Zitat C. Denoual and F. Hild, Dynamic Fragmentation of Brittle Solids: A Multi-scale Model, Eur. J. Mech. Solids A, 2002, 21, p 105–120CrossRef C. Denoual and F. Hild, Dynamic Fragmentation of Brittle Solids: A Multi-scale Model, Eur. J. Mech. Solids A, 2002, 21, p 105–120CrossRef
13.
Zurück zum Zitat M. Yazdchi, S. Valliappan, and W. Zhang, A Continuum Model for Dynamic Damage Evolution of Anisotropic Brittle Materials, Int. J. Numer. Methods Eng., 1996, 39, p 1555–1583CrossRef M. Yazdchi, S. Valliappan, and W. Zhang, A Continuum Model for Dynamic Damage Evolution of Anisotropic Brittle Materials, Int. J. Numer. Methods Eng., 1996, 39, p 1555–1583CrossRef
14.
Zurück zum Zitat F. Hild, C. Denoual, P. Forquin, and X. Brajer, On the Probabilistic and Deterministic Transition Involved in a Fragmentation Process of Brittle Materials, Comput. Struct., 2003, 81, p 1241–1253CrossRef F. Hild, C. Denoual, P. Forquin, and X. Brajer, On the Probabilistic and Deterministic Transition Involved in a Fragmentation Process of Brittle Materials, Comput. Struct., 2003, 81, p 1241–1253CrossRef
15.
Zurück zum Zitat T.J. Holmquist, D.W. Templeton, and K.D. Bishnoi, Constitutive Modeling of Aluminum Nitride for Large Strain High-strain Rate, and High-pressure Applications, Int. J. Impact Eng., 2001, 25, p 211–231CrossRef T.J. Holmquist, D.W. Templeton, and K.D. Bishnoi, Constitutive Modeling of Aluminum Nitride for Large Strain High-strain Rate, and High-pressure Applications, Int. J. Impact Eng., 2001, 25, p 211–231CrossRef
16.
Zurück zum Zitat G.T. Camacho and M. Ortiz, Computational Modeling of Impact Damage in Brittle Materials, Int. J. Solids Struct., 1996, 33, p 20–22, 2899–2938CrossRef G.T. Camacho and M. Ortiz, Computational Modeling of Impact Damage in Brittle Materials, Int. J. Solids Struct., 1996, 33, p 20–22, 2899–2938CrossRef
17.
Zurück zum Zitat B.L. Holian and G.K. Straub, Molecular Dynamics of Shock Waves in Three-Dimensional Solids: Transition from Nonsteady to Steady Waves in Perfect Crystals and Implications for the Rankine-Hugoniot Conditions, Phys. Rev. Lett., 1979, 43, p 1598CrossRef B.L. Holian and G.K. Straub, Molecular Dynamics of Shock Waves in Three-Dimensional Solids: Transition from Nonsteady to Steady Waves in Perfect Crystals and Implications for the Rankine-Hugoniot Conditions, Phys. Rev. Lett., 1979, 43, p 1598CrossRef
18.
Zurück zum Zitat G.K. Straub, S.K. Schiferl, and D.C. Wallace, Thermodynamic Properties of Fluid Sodium from Molecular Dynamics, Phys. Rev. B, 1983, 28, p 312–316CrossRef G.K. Straub, S.K. Schiferl, and D.C. Wallace, Thermodynamic Properties of Fluid Sodium from Molecular Dynamics, Phys. Rev. B, 1983, 28, p 312–316CrossRef
19.
Zurück zum Zitat V. Y. Klimenko and A. N. Dremin, in Detonatsiya, Chernogolovka, O. N. Breusov et al., Eds., AkademiiNauk, Moscow, 1978, p 79 V. Y. Klimenko and A. N. Dremin, in Detonatsiya, Chernogolovka, O. N. Breusov et al., Eds., AkademiiNauk, Moscow, 1978, p 79
20.
Zurück zum Zitat B.L. Holian, W.G. Hoover, B. Moran, and G.K. Straub, Shock-Wave Structure Via Non-equilibrium Molecular Dynamics and Navier-Stokes Continuum Mechanics, Phys. Rev. A, 1980, 22, p 2498CrossRef B.L. Holian, W.G. Hoover, B. Moran, and G.K. Straub, Shock-Wave Structure Via Non-equilibrium Molecular Dynamics and Navier-Stokes Continuum Mechanics, Phys. Rev. A, 1980, 22, p 2498CrossRef
21.
Zurück zum Zitat W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd ed., John Wiley & Sons, New York, 1976, p 91–124 W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd ed., John Wiley & Sons, New York, 1976, p 91–124
22.
Zurück zum Zitat H. Sun, COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds, J. Phys. Chem. B, 1998, 102, p 7338–7364CrossRef H. Sun, COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds, J. Phys. Chem. B, 1998, 102, p 7338–7364CrossRef
23.
Zurück zum Zitat H. Sun, P. Ren, and J.R. Fried, The COMPASS force field: parameterization and validation for phosphazenes, Comput. Theoret. Polym. Sci., 1998, 8(1/2), p 229–246CrossRef H. Sun, P. Ren, and J.R. Fried, The COMPASS force field: parameterization and validation for phosphazenes, Comput. Theoret. Polym. Sci., 1998, 8(1/2), p 229–246CrossRef
26.
Zurück zum Zitat M. Grujicic, Y.P. Sun, and K.L. Koudela, The Effect of Covalent Functionalization of Carbon Nanotube Reinforcements on the Atomic-level Mechanical Properties of Poly-Vinyl-Ester-Epoxy, Appl. Surf. Sci., 2007, 253, p 3009CrossRef M. Grujicic, Y.P. Sun, and K.L. Koudela, The Effect of Covalent Functionalization of Carbon Nanotube Reinforcements on the Atomic-level Mechanical Properties of Poly-Vinyl-Ester-Epoxy, Appl. Surf. Sci., 2007, 253, p 3009CrossRef
28.
Zurück zum Zitat D.N. Theodorou and U.W. Suter, Atomistic Modeling of Mechanical Properties of Polymeric Glasses, Macromolecules, 1986, 19, p 139–154CrossRef D.N. Theodorou and U.W. Suter, Atomistic Modeling of Mechanical Properties of Polymeric Glasses, Macromolecules, 1986, 19, p 139–154CrossRef
29.
Zurück zum Zitat A.V. Amirkhizi, J. Isaacs, J. McGee, and S. Namet-Nasser, An Experimentally-Based Viscoelastic Constitutive Model for Polyurea, Including Pressure and Temperature Effects, Philos. Mag., 2006, 86(36), p 5847–5866CrossRef A.V. Amirkhizi, J. Isaacs, J. McGee, and S. Namet-Nasser, An Experimentally-Based Viscoelastic Constitutive Model for Polyurea, Including Pressure and Temperature Effects, Philos. Mag., 2006, 86(36), p 5847–5866CrossRef
30.
Zurück zum Zitat M. Grujicic, W.C. Bell, B. Pandurangan, and T. He, Blast-Wave Impact Mitigation of Polyurea When Used as a Helmet Suspension-Pad Material, Mater. Des., 2010, 31(9), p 4050–4065CrossRef M. Grujicic, W.C. Bell, B. Pandurangan, and T. He, Blast-Wave Impact Mitigation of Polyurea When Used as a Helmet Suspension-Pad Material, Mater. Des., 2010, 31(9), p 4050–4065CrossRef
31.
Zurück zum Zitat M. Grujicic, W. C. Bell, B. Pandurangan and P. S. Glomski, Fluid/Structure Interaction Computational Investigation of the Blast-wave Mitigation Efficiency of the Advanced Combat Helmet, J. Mater. Eng. Perform., in press, 2010 M. Grujicic, W. C. Bell, B. Pandurangan and P. S. Glomski, Fluid/Structure Interaction Computational Investigation of the Blast-wave Mitigation Efficiency of the Advanced Combat Helmet, J. Mater. Eng. Perform., in press, 2010
32.
Zurück zum Zitat C.S. Alexander, L.C. Chhabildas, W.D. Reinhart, and D.W. Templeton, Changes to the Shock Response of Fused Quartz Due to Glass Modification, Int. J. Impact Eng., 2008, 35, p 1376–1385CrossRef C.S. Alexander, L.C. Chhabildas, W.D. Reinhart, and D.W. Templeton, Changes to the Shock Response of Fused Quartz Due to Glass Modification, Int. J. Impact Eng., 2008, 35, p 1376–1385CrossRef
Metadaten
Titel
Molecular-Level Simulations of Shock Generation and Propagation in Soda-Lime Glass
verfasst von
M. Grujicic
W. C. Bell
B. Pandurangan
B. A. Cheeseman
C. Fountzoulas
P. Patel
Publikationsdatum
01.08.2012
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 8/2012
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-011-0064-4

Weitere Artikel der Ausgabe 8/2012

Journal of Materials Engineering and Performance 8/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.