Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

Molecular Motion and Dynamic Crystal Structures of Hybrid Halide Perovskites

verfasst von : Jarvist M. Frost, Aron Walsh

Erschienen in: Organic-Inorganic Halide Perovskite Photovoltaics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hybrid halide perovskites are semiconductors with a twist. Their structures are highly dynamic with disorder occurring across a range of length and time scales. Herein, we discuss the atomic processes that underpin this behaviour and how they are linked to photovoltaic performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wells, H.L.: Uber die Caesium- und Kalium-Bleihalogenide. Zeitschrift fur Anorg. Chemie 3(1), 195–210 (1893)CrossRef Wells, H.L.: Uber die Caesium- und Kalium-Bleihalogenide. Zeitschrift fur Anorg. Chemie 3(1), 195–210 (1893)CrossRef
2.
Zurück zum Zitat Wyckoff, R.W.G.: The crystal structures of monomethyl ammonium chlorostannate and chloroplatinate. Am. J. Sci. s5-16, 349–359 (1928) Wyckoff, R.W.G.: The crystal structures of monomethyl ammonium chlorostannate and chloroplatinate. Am. J. Sci. s5-16, 349–359 (1928)
3.
Zurück zum Zitat Weber, D.: CH3NH3SnBrxI3-x (x = 0–3), a Sn(II)-System with the Cubic Perovskite Structure. Zeitschrift für Naturforsch. 33b, 862–865 (1978) Weber, D.: CH3NH3SnBrxI3-x (x = 0–3), a Sn(II)-System with the Cubic Perovskite Structure. Zeitschrift für Naturforsch. 33b, 862–865 (1978)
4.
Zurück zum Zitat Weber, D.: CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure. Zeitschrift für Naturforsch. B, 33b, 1443–1445 (1978) Weber, D.: CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure. Zeitschrift für Naturforsch. B, 33b, 1443–1445 (1978)
5.
Zurück zum Zitat Poglitsch, A., Weber, D.: Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373 (1987) Poglitsch, A., Weber, D.: Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373 (1987)
6.
Zurück zum Zitat Onoda-Yamamuro, N., Matsuo, T., Suga, H.: Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II). J. Phys. Chem. Solids 51, 1383–1395 (1990)CrossRef Onoda-Yamamuro, N., Matsuo, T., Suga, H.: Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II). J. Phys. Chem. Solids 51, 1383–1395 (1990)CrossRef
7.
Zurück zum Zitat Wasylishen, R., Knop, O., Macdonald, J.: Cation rotation in methylammonium lead halides. Solid State Commun. 56(7), 581–582 (1985)CrossRef Wasylishen, R., Knop, O., Macdonald, J.: Cation rotation in methylammonium lead halides. Solid State Commun. 56(7), 581–582 (1985)CrossRef
8.
Zurück zum Zitat Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRef Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRef
9.
Zurück zum Zitat Brivio, F., Walker, A.B., Walsh, A.: Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1(4), 042111 (2013)CrossRef Brivio, F., Walker, A.B., Walsh, A.: Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1(4), 042111 (2013)CrossRef
10.
Zurück zum Zitat Frost, J.M., Butler, K.T., Walsh, A.: Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater. 2, 081506 (2014)CrossRef Frost, J.M., Butler, K.T., Walsh, A.: Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater. 2, 081506 (2014)CrossRef
11.
Zurück zum Zitat Brivio, F., Butler, K.T., Walsh, A., van Schilfgaarde, M.: Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B 89, 155204 (2014)CrossRef Brivio, F., Butler, K.T., Walsh, A., van Schilfgaarde, M.: Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B 89, 155204 (2014)CrossRef
12.
Zurück zum Zitat Butler, K.T., Frost, J.M., Walsh, A.: Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3. Mater. Horiz. 2, 228–231 (2015) Butler, K.T., Frost, J.M., Walsh, A.: Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3. Mater. Horiz. 2, 228–231 (2015)
13.
Zurück zum Zitat Walsh, A.: Principles of chemical bonding and band gap engineering in hybrid organic-inorganic halide perovskites. J. Phys. Chem. C 119, 5755–5760 (2015)CrossRef Walsh, A.: Principles of chemical bonding and band gap engineering in hybrid organic-inorganic halide perovskites. J. Phys. Chem. C 119, 5755–5760 (2015)CrossRef
14.
Zurück zum Zitat Bakulin, A.A., Selig, O., Bakker, H.J., Rezus, Y.L.A., Müller, C., Glaser, T., Lovrincic, R., Sun, Z., Chen, Z., Walsh, A., Frost, J.M., Jansen, T.L.C.: Real-time observation of organic cation reorientation in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 6, 3663–3669 (2015) Bakulin, A.A., Selig, O., Bakker, H.J., Rezus, Y.L.A., Müller, C., Glaser, T., Lovrincic, R., Sun, Z., Chen, Z., Walsh, A., Frost, J.M., Jansen, T.L.C.: Real-time observation of organic cation reorientation in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 6, 3663–3669 (2015)
15.
Zurück zum Zitat Eames, C., Frost, J.M., Barnes, P.R.F., ORegan, B.C., Walsh, A., Islam, M.S.: Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015) Eames, C., Frost, J.M., Barnes, P.R.F., ORegan, B.C., Walsh, A., Islam, M.S.: Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015)
16.
Zurück zum Zitat Brivio, F., Frost, J.M., Skelton, J.M., Jackson, A.J., Weber, O.J., Weller, M.T., Goni, A.R., Leguy, A.M.A., Barnes, P.R.F., Walsh, A.: Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Phys. Rev. B 92, 144308 (2015)CrossRef Brivio, F., Frost, J.M., Skelton, J.M., Jackson, A.J., Weber, O.J., Weller, M.T., Goni, A.R., Leguy, A.M.A., Barnes, P.R.F., Walsh, A.: Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Phys. Rev. B 92, 144308 (2015)CrossRef
17.
Zurück zum Zitat Weller, M.T., Weber, O.J., Frost, J.M., Walsh, A.: The cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 6, 3209–3212 (2015) Weller, M.T., Weber, O.J., Frost, J.M., Walsh, A.: The cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 6, 3209–3212 (2015)
18.
Zurück zum Zitat Leguy, A.M.A., Frost, J.M., McMahon, A.P., Sakai, V.G., Kochelmann, W., Law, C., Li, X., Foglia, F., Walsh, A., ORegan, B.C., Nelson, J., Cabral, J.T., Barnes, P.R.F.: The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells. Nat. Commun. 6, 7124 (2015) Leguy, A.M.A., Frost, J.M., McMahon, A.P., Sakai, V.G., Kochelmann, W., Law, C., Li, X., Foglia, F., Walsh, A., ORegan, B.C., Nelson, J., Cabral, J.T., Barnes, P.R.F.: The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells. Nat. Commun. 6, 7124 (2015)
19.
Zurück zum Zitat Glazer, A.M.: The classification of tilted octahedra in perovskites. Acta Crystallogr. Sect. B 28, 3384–3392 (1972)CrossRef Glazer, A.M.: The classification of tilted octahedra in perovskites. Acta Crystallogr. Sect. B 28, 3384–3392 (1972)CrossRef
20.
Zurück zum Zitat Mitzi, D.B.: Templating and structural engineering in organic-inorganic perovskites. J. Chem. Soc. Dalt. Trans. 2001(1), 1–12 (2001)CrossRef Mitzi, D.B.: Templating and structural engineering in organic-inorganic perovskites. J. Chem. Soc. Dalt. Trans. 2001(1), 1–12 (2001)CrossRef
21.
Zurück zum Zitat Onoda-Yamamuro, N., Yamamuro, O., Matsuo, T., Suga, H.: p-T phase relations of CH3NH3PbX3 (X = Cl, Br, I) crystals. J. Phys. Chem. Solids 53(2), 277–281 (1992) Onoda-Yamamuro, N., Yamamuro, O., Matsuo, T., Suga, H.: p-T phase relations of CH3NH3PbX3 (X = Cl, Br, I) crystals. J. Phys. Chem. Solids 53(2), 277–281 (1992)
22.
Zurück zum Zitat Weller, M.T., Weber, O.J., Henry, P.F., Di Pumpo, A.M., Hansen, T.C.: Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chem. Commun. 51, 4180–4183 (2015)CrossRef Weller, M.T., Weber, O.J., Henry, P.F., Di Pumpo, A.M., Hansen, T.C.: Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chem. Commun. 51, 4180–4183 (2015)CrossRef
23.
Zurück zum Zitat Baikie, T., Fang, Y., Kadro, J.M., Schreyer, M., Wei, F., Mhaisalkar, S.G., Gratzel, M., White, T.J.: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1(18), 5628 (2013) Baikie, T., Fang, Y., Kadro, J.M., Schreyer, M., Wei, F., Mhaisalkar, S.G., Gratzel, M., White, T.J.: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1(18), 5628 (2013)
24.
Zurück zum Zitat Worhatch, R.J., Kim, H.J., Swainson, I.P., Yonkeu, A.L., Billinge, S.J.L.: Study of local structure in selected cubic organic-inorganic perovskites. Chem. Mater. 20, 1272–1277 (2008) Worhatch, R.J., Kim, H.J., Swainson, I.P., Yonkeu, A.L., Billinge, S.J.L.: Study of local structure in selected cubic organic-inorganic perovskites. Chem. Mater. 20, 1272–1277 (2008)
25.
Zurück zum Zitat Kieslich, G., Sun, S., Cheetham, T.: Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog. Chem. Sci. 5, 4712–4715 (2014)CrossRef Kieslich, G., Sun, S., Cheetham, T.: Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog. Chem. Sci. 5, 4712–4715 (2014)CrossRef
26.
Zurück zum Zitat Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013)CrossRef Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013)CrossRef
27.
Zurück zum Zitat Chung, I., Song, J.H., Im, J., Androulakis, J., Malliakas, C.D., Li, H., Freeman, A.J., Kenney, J.T., Kanatzidis, M.G.: CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134, 8579–8587 (2012) Chung, I., Song, J.H., Im, J., Androulakis, J., Malliakas, C.D., Li, H., Freeman, A.J., Kenney, J.T., Kanatzidis, M.G.: CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134, 8579–8587 (2012)
28.
Zurück zum Zitat Silva, E.L., Skelton, J.M., Parker, S.C., Walsh, A.: Phase stability and transformations in the halide perovskite CsSnI3. Phys. Rev. B 91, 144107 (2015)CrossRef Silva, E.L., Skelton, J.M., Parker, S.C., Walsh, A.: Phase stability and transformations in the halide perovskite CsSnI3. Phys. Rev. B 91, 144107 (2015)CrossRef
29.
Zurück zum Zitat Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I.: Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015)CrossRef Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I.: Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015)CrossRef
30.
Zurück zum Zitat de Leeuw, S.W., Perram, J.W., Smith, E.R.: Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants. Proc. R. Soc. A 373(1752), 27–56 (1980)MathSciNetCrossRef de Leeuw, S.W., Perram, J.W., Smith, E.R.: Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants. Proc. R. Soc. A 373(1752), 27–56 (1980)MathSciNetCrossRef
34.
Zurück zum Zitat Walsh, A., Payne, D.J., Egdell, R.G., Watson, G.W.: Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem. Soc. Rev. 40(9), 4455–4463 (2011)CrossRef Walsh, A., Payne, D.J., Egdell, R.G., Watson, G.W.: Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem. Soc. Rev. 40(9), 4455–4463 (2011)CrossRef
35.
Zurück zum Zitat Young, J., Stroppa, A., Picozzi, S., Rondinelli, J.M.: Anharmonic lattice interactions in improper ferroelectrics for multiferroic design. J. Phys.: Condens. Matter 27(28), 283202 (2015) Young, J., Stroppa, A., Picozzi, S., Rondinelli, J.M.: Anharmonic lattice interactions in improper ferroelectrics for multiferroic design. J. Phys.: Condens. Matter 27(28), 283202 (2015)
36.
Zurück zum Zitat Grancini, G., Srimath Kandada, A.R., Frost, J.M., Barker, A.J., De Bastiani, M., Gandini, M., Marras, S., Lanzani, G., Walsh, A., Petrozza, A.: Role of microstructure in the electronhole interaction of hybrid lead halide perovskites. Nat. Photonics, 7, 695–702 (2015) Grancini, G., Srimath Kandada, A.R., Frost, J.M., Barker, A.J., De Bastiani, M., Gandini, M., Marras, S., Lanzani, G., Walsh, A., Petrozza, A.: Role of microstructure in the electronhole interaction of hybrid lead halide perovskites. Nat. Photonics, 7, 695–702 (2015)
37.
Zurück zum Zitat Stroppa, A., Quarti, C., De Angelis, F., Picozzi, S.: Ferroelectric polarization of CH3NH3PbI3: a detailed study based on density functional theory and symmetry mode analysis. J. Phys. Chem. Lett. 6, 2223–2231 (2015) Stroppa, A., Quarti, C., De Angelis, F., Picozzi, S.: Ferroelectric polarization of CH3NH3PbI3: a detailed study based on density functional theory and symmetry mode analysis. J. Phys. Chem. Lett. 6, 2223–2231 (2015)
38.
Zurück zum Zitat Ma, J., Wang, L.-W.: Nanoscale charge localization induced by random orientations of organic molecules in hybrid perovskite CH3NH3PbI3. Nano Lett. 15, 248–253 (2014) Ma, J., Wang, L.-W.: Nanoscale charge localization induced by random orientations of organic molecules in hybrid perovskite CH3NH3PbI3. Nano Lett. 15, 248–253 (2014)
39.
Zurück zum Zitat Sherkar, T., Koster, J.A.: Can ferroelectric polarization explain the high performance of hybrid halide perovskite solar cells? Phys. Chem. Chem. Phys. 18, 331–338 (2016)CrossRef Sherkar, T., Koster, J.A.: Can ferroelectric polarization explain the high performance of hybrid halide perovskite solar cells? Phys. Chem. Chem. Phys. 18, 331–338 (2016)CrossRef
40.
Zurück zum Zitat Chen, T., Foley, B.J., Ipek, B., Tyagi, M., Copley, J.R.D., Brown, C.M., Choi, J.J., Lee, S.-H.: Rotational dynamics of organic cations in CH3NH3PbI3 perovskite. Phys. Chem. Chem. Phys. 17, 31278–31286 (2015) Chen, T., Foley, B.J., Ipek, B., Tyagi, M., Copley, J.R.D., Brown, C.M., Choi, J.J., Lee, S.-H.: Rotational dynamics of organic cations in CH3NH3PbI3 perovskite. Phys. Chem. Chem. Phys. 17, 31278–31286 (2015)
41.
Zurück zum Zitat Chen, T., Foley, B.J., Ipek, B., Tyagi, M., Copley, J.R.D., Brown, C.M., Choi, J.J., Lee, S.-H.: Rotational dynamics of organic cations in CH3NH3PbI3 perovskite. arXiv:1506.02205 [cond-mat] Chen, T., Foley, B.J., Ipek, B., Tyagi, M., Copley, J.R.D., Brown, C.M., Choi, J.J., Lee, S.-H.: Rotational dynamics of organic cations in CH3NH3PbI3 perovskite. arXiv:​1506.​02205 [cond-mat]
42.
Zurück zum Zitat Mizusaki, J., Arai, K., Fueki, K.: Ionic conduction of the perovskite-type halides. Solid State Ionics 11, 203–211 (1983)CrossRef Mizusaki, J., Arai, K., Fueki, K.: Ionic conduction of the perovskite-type halides. Solid State Ionics 11, 203–211 (1983)CrossRef
43.
Zurück zum Zitat Walsh, A., Scanlon, D.O., Chen, S., Gong, X.G., Wei, S.-H.: Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chemie Int. Ed. 54, 1791–1794 (2015)CrossRef Walsh, A., Scanlon, D.O., Chen, S., Gong, X.G., Wei, S.-H.: Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chemie Int. Ed. 54, 1791–1794 (2015)CrossRef
44.
Zurück zum Zitat Kim, J., Lee, S.H., Lee, J.H., Hong, K.H.: The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5(8), 1312–1317 (2014)CrossRef Kim, J., Lee, S.H., Lee, J.H., Hong, K.H.: The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5(8), 1312–1317 (2014)CrossRef
45.
Zurück zum Zitat Yin, W.-J., Shi, T., Yan, Y.: Superior photovoltaic properties of lead halide perovskites: insights from first-principles theory. J. Phys. Chem. C 119, 5253–5264 (2015)CrossRef Yin, W.-J., Shi, T., Yan, Y.: Superior photovoltaic properties of lead halide perovskites: insights from first-principles theory. J. Phys. Chem. C 119, 5253–5264 (2015)CrossRef
46.
Zurück zum Zitat Catlow, C.R.A., Sokol, A.A., Walsh, A.: Microscopic origins of electron and hole stability in ZnO. Chem. Commun. 47(12), 3386–3388 (2011)CrossRef Catlow, C.R.A., Sokol, A.A., Walsh, A.: Microscopic origins of electron and hole stability in ZnO. Chem. Commun. 47(12), 3386–3388 (2011)CrossRef
47.
Zurück zum Zitat Yang, T.-Y., Gregori, G., Pellet, N., Grätzel, M., Maier, J.: The significance of ion conduction in a hybrid organic-inorganic lead-iodide-based perovskite photosensitizer. Angew. Chemie Int. Ed. 54, 7905–7910 (2015)CrossRef Yang, T.-Y., Gregori, G., Pellet, N., Grätzel, M., Maier, J.: The significance of ion conduction in a hybrid organic-inorganic lead-iodide-based perovskite photosensitizer. Angew. Chemie Int. Ed. 54, 7905–7910 (2015)CrossRef
48.
Zurück zum Zitat Harding, J.H.: Calculation of the free energy of defects in calcium fluoride. Phys. Rev. B 32, 6861 (1985)CrossRef Harding, J.H.: Calculation of the free energy of defects in calcium fluoride. Phys. Rev. B 32, 6861 (1985)CrossRef
49.
Zurück zum Zitat Snaith, H.J., Abate, A., Ball, J.M., Eperon, G.E., Leijtens, T., Noel, N.K., Stranks, S.D., Wang, J.T.W., Wojciechowski, K., Zhang, W.: Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)CrossRef Snaith, H.J., Abate, A., Ball, J.M., Eperon, G.E., Leijtens, T., Noel, N.K., Stranks, S.D., Wang, J.T.W., Wojciechowski, K., Zhang, W.: Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)CrossRef
50.
Zurück zum Zitat Xiao, Z., Yuan, Y., Shao, Y., Wang, Q., Dong, Q., Bi, C., Sharma, P., Gruverman, A., Huang, J.: Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015)CrossRef Xiao, Z., Yuan, Y., Shao, Y., Wang, Q., Dong, Q., Bi, C., Sharma, P., Gruverman, A., Huang, J.: Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015)CrossRef
51.
Zurück zum Zitat Egger, D.A., Kronik, L., Rappe, A.M.: Theory of hydrogen migration in organic-inorganic halide perovskites. Angew. Chemie Int. Ed. 54, 12437–12441 (2015) Egger, D.A., Kronik, L., Rappe, A.M.: Theory of hydrogen migration in organic-inorganic halide perovskites. Angew. Chemie Int. Ed. 54, 12437–12441 (2015)
52.
Zurück zum Zitat Azpiroz, J.M., Mosconi, E., Bisquert, J., De Angelis, F.: Defects migration in methylammonium lead iodide and their role in perovskite solar cells operation. Energy Environ. Sci. 8, 2118–2127 (2015)CrossRef Azpiroz, J.M., Mosconi, E., Bisquert, J., De Angelis, F.: Defects migration in methylammonium lead iodide and their role in perovskite solar cells operation. Energy Environ. Sci. 8, 2118–2127 (2015)CrossRef
53.
Zurück zum Zitat Haruyama, J., Sodeyama, K., Han, L., Tateyama, Y.: First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015)CrossRef Haruyama, J., Sodeyama, K., Han, L., Tateyama, Y.: First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015)CrossRef
54.
Zurück zum Zitat Pellet, N., Teuscher, J., Maier, J., Grätzel, M.: Transforming hybrid organic inorganic perovskites by rapid halide exchange. Chem. Mater. 27, 2181–2188 (2015)CrossRef Pellet, N., Teuscher, J., Maier, J., Grätzel, M.: Transforming hybrid organic inorganic perovskites by rapid halide exchange. Chem. Mater. 27, 2181–2188 (2015)CrossRef
55.
Zurück zum Zitat Nedelcu, G., Protesescu, L., Yakunin, S., Bodnarchuk, M.I., Grotevent, M., Kovalenko, M.V.: Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 15, 5635–5640 (2015)CrossRef Nedelcu, G., Protesescu, L., Yakunin, S., Bodnarchuk, M.I., Grotevent, M., Kovalenko, M.V.: Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 15, 5635–5640 (2015)CrossRef
56.
Zurück zum Zitat Eperon, G.E., Beck, C.E., Snaith, H.: Cation exchange for thin film lead iodide perovskite interconversion. Mater. Horiz. 3, 63–71 (2016)CrossRef Eperon, G.E., Beck, C.E., Snaith, H.: Cation exchange for thin film lead iodide perovskite interconversion. Mater. Horiz. 3, 63–71 (2016)CrossRef
57.
Zurück zum Zitat Loidl, A., Krohns, S., Hemberger, J., Lunkenheimer, P.: Bananas go paraelectric. J. Phys. Condens. Matter 20(19), 191001 (2008)CrossRef Loidl, A., Krohns, S., Hemberger, J., Lunkenheimer, P.: Bananas go paraelectric. J. Phys. Condens. Matter 20(19), 191001 (2008)CrossRef
58.
Zurück zum Zitat Juarez-Perez, E.J., Sanchez, R.S., Badia, L., Garcia-Belmonte, G., Kang, Y.S., Mora-Sero, I., Bisquert, J.: Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014) Juarez-Perez, E.J., Sanchez, R.S., Badia, L., Garcia-Belmonte, G., Kang, Y.S., Mora-Sero, I., Bisquert, J.: Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014)
Metadaten
Titel
Molecular Motion and Dynamic Crystal Structures of Hybrid Halide Perovskites
verfasst von
Jarvist M. Frost
Aron Walsh
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-35114-8_1