1.
Blanc PJ, Laussac JP, Le Bars J, Le Bars P, Loret MO, Pareilleux A, Prome D, Prome JC, Santerre AL, Goma G (1995) Characterisation of monascidin A from
Monascus as citrinin. Int J Food Microbiol 27:201–213. doi:10.1016/0168-1605(94)00167-5
CrossRef
3.
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) (2011) Scientific opinion on the substantiation of health claims related to monacolin K from red yeast rice and maintenance of normal blood LDL-cholesterol concentrations (ID 1648, 1700) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 9:2304. doi:10.2903/j.efsa.2011.2304
CrossRef
4.
Yin H, Xie SY, Zhang GM, Xie SM (2003) Effect of space flight on yield of
Monascus purpureus. Space Med Med Eng 16:374–376 (in Chinese)
5.
Yang Y, Liu B, Du X, Li P, Liang B, Cheng X, Du L, Huang D, Wang L, Wang S (2015) Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain,
Monascus purpureus YY-1. Sci Rep 5:8331. doi:10.1038/srep08331
CrossRef
6.
Balakrishan B, Karki S, Chiu S-H, Kim H-J, Suh J-W, Nam B, Yoon Y-M, Chen C-C, Kwon H-J (2013) Genetic localization and in vivo characterization of a
Monascus azaphilone pigment biosynthetic cluster. Appl Microbiol Biotechnol 14:6337–6345. doi:10.1007/s00253-013-4745-9
CrossRef
7.
Balakrishnan B, Kim H-J, Suh J-W, Chen C-C, Liu K-H, Park S-H, Kwon H-J (2014)
Monascus azaphilone pigment biosynthesis employs a dedicated fatty acid synthase for short chain fatty acyl moieties. J Korean Soc Appl Biol Chem 57:191–196. doi:10.1007/s13765-014-4017-0
CrossRef
8.
Chen W, He Y, Zhou Y, Shao Y, Feng Y, Li M, Chen F (2015) Edible filamentous fungi from the species
Monascus: early traditional fermentations, modern molecular biology and future genomics. Compr Rev Food Sci Food Saf 14:555–567. doi:10.1111/1541-4337.12145
CrossRef
9.
Shao Y, Xu L, Chen F (2011) Genetic diversity analysis of
Monascus strains using SRAP and ISSR markers. Mycoscience 52:224–233. doi:10.1007/s10267-010-0087-y
CrossRef
10.
Houbraken J, Samson RA (2011) Phylogeny of
Penicillium and the segregation of
Trichocomaceae into three families. Stud Mycol 70:1–51. doi:10.3114/sim.2011.70.01
CrossRef
11.
Bau Y-S (1984) Notes on the sexual stage of
Monascus purpureus. Acta Mycol Sin 3:149–152
12.
Young EM (1931) The morphology of
Monascus ruber. Am J Bot 18:449–517
CrossRef
13.
Carels M, Shepherd D (1975) Sexual reproductive cycle of
Monascus in submerged shaken culture. J Bacteriol 122:288–294
14.
Wong HC, Chien CY (1986) Ultrastructure of sexual reproduction of
Monascus purpureus. Mycologia 78:713–721. doi:10.2307/3807515
CrossRef
15.
Carels M, Shepherd D (1977) The effect of different nitrogen sources on pigment production and sporulation of
Monascus species in submerged, shaken culture. Can J Microbiol 23:1360–1377
CrossRef
16.
Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459. doi:10.1128/MMBR.66.3.447-459.2002
CrossRef
17.
Rasheva TV, Nedeva TS, Hallet J-N, Kujumdzieva AV (2003) Characterization of a non-pigment producing
Monascus purpureus mutant strain. Antonie Van Leeuwenhoek 83:333–340
CrossRef
18.
Li L, He L, Lai Y, Shao Y, Chen F (2014) Cloning and functional analysis of the Gβ gene
Mgb1 and the Gγ gene
Mgg1 in
Monascus ruber. J Microbiol 52:35–43. doi:10.1007/s12275-014-3072-x
CrossRef
19.
Chen MH, Johns MR (1994) Effect of carbon source on ethanol and pigment production by
Monascus purpureus. Enzyme Microb Technol 16:584–590. doi:10.1016/0141-0229(94)90123-6
CrossRef
20.
Bridge PD, Hawkworth DL (1985) Biochemical tests as an aid to the identification of
Monascus species. Lett Appl Microbiol 1:25–29. doi:10.1111/j.1472-765X.1985.tb01481.x
CrossRef
21.
Lumyong S, Tomita F (1993)
l-malic acid production by an albino strain of
Monascus araneosus. World J Microbiol Biotechnol 9:383–384. doi:10.1007/BF00383086
CrossRef
22.
Hajajj H, Blanc P, Groussac E, Uribelarrea JL, Goma G, Loubiere P (2000) Kinetic analysis of red pigment and citrinin production by
Monascus ruber as a function of organic acid accumulation. Enzyme Microb Technol 27:619–625. doi:10.1016/S0141-0229(00)00260-X
CrossRef
23.
Yongsmith B, Krairak S, Bavavoda R (1994) Production of yellow pigments in submerged culture of a mutant of
Monascus spp. J Ferment Bioeng 78:223–228. doi:10.1016/0922-338X(94)90294-1
CrossRef
24.
Kiyohara H, Watanabe T, Imai J, Takizawa N, Hatta T, Nagao K, Yamamoto A (1990) Intergeneric hybridization between
Monascus anka and
Aspergillus oryzae by protoplast fusion. Appl Microbiol Biotechnol 33:671–676. doi:10.1007/BF00604935
CrossRef
25.
Zhi C, Wen L, Ping Y, Yuan S (2007) Enhancement of monacolin K production via intergeneric protoplast fusion between
Aspergillus terreus and
Monascus anka. Prog Nat Sci 17:703–707. doi:10.1080/10002007088537462
CrossRef
26.
Shao Y, Lei M, Mao Z, Zhou Y, Chen F (2014) Insights into
Monascus biology at the genetic level. Appl Microbiol Biotechnol 98:3911–3922. doi:10.1007/s00253-014-5608-8
CrossRef
27.
Patakova P (2013)
Monascus secondary metabolites: production and biological activity. J Ind Microbial Biotechnol 40:169–181. doi:10.1007/s10295-012-1216-8
CrossRef
28.
Feng Y, Shao Y, Chen F (2012)
Monascus pigments. Appl Microbiol Biotechnol 96:1421–1440. doi:10.1007/s00253-012-4504-3
CrossRef
29.
Haws EJ, Holker JSE, Kelly A, Powell ADG, Robertson A (1959) The chemistry of fungi. Part XXXVII. The structure of rubropunctatin. J Chem Soc 70:3598–3610. doi:10.1039/JR9590003598
CrossRef
30.
Fielding BC, Holker JSE, Jones DF, Powell ADG, Richmond KW, Robertson A, Whalley WB (1961) The chemistry of fungi. Part XXXIX. The structure of monascin. J Chem Soc 72:4579–4589. doi:10.1039/JR9610004579
CrossRef
31.
Kumasaki S, Nakanishi K, Nishikawa E, Ohashi M (1962) Structure of monascorubrin. Tetrahedron 18:1171–1184. doi:10.1016/S0040-4020(01)99285-3
CrossRef
32.
Hadfield JR, Holker JSE, Stanway DN (1967) The biosynthesis of fungal metabolites. Part II. The β-oxo equivalents in rubropunctatin and monascorubrin. J Chem Soc C 751–755. doi:10.1039/J39670000751
33.
Chen FC, Manchand PS, Whalley WB (1971) The chemistry of fungi. Part LXIV. The structure of monascin. J Chem Soc C 3577–3579. doi:10.1039/J39710003577
34.
Manchand PS, Whalley WB, Chen FC (1973) Isolation and structure of ankaflavin: a new pigment from
Monascus anka. Phytochemistry 12:2531–2532. doi:10.1016/0031-9422(73)80470-4
CrossRef
35.
Hajajj H, Klaébé A, Goma G, Blanc PJ, Barbier E, François J (2000) Medium-chain fatty acids affect citrinin production in the filamentous fungus
Monascus ruber. Appl Environ Microbiol 66:1120–1125. doi:10.1128/AEM.66.3.1120-1125.2000
CrossRef
36.
Balakrishnan B, Suh J-W, Park S-H, Kwon H-J (2014) Delineating
Monascus azaphilone pigment biosynthesis: oxidoreductive modifications determine the ring cyclization pattern in azaphilone synthesis. RSC Adv 4:59405. doi:10.1039/C4RA11713A
CrossRef
37.
Balakrishnan B, Chen C-C, Pan T-M, Kwon H-J (2014) Mpp7 controls regioselective Knoevenagel condensation during the biosynthesis of
Monascus azaphilone pigments. Tetrahedron Lett 55:1640–1643. doi:10.1016/j.tetlet.2014.01.090
CrossRef
38.
Jůzlová P, Martínková L, Křen V (1996) Secondary metabolites of the fungus
Monascus: a review. J Ind Microbiol 16:163–170. doi:10.1007/BF01569999
CrossRef
39.
Woo P, Lam C-W, Tam EWT, Lee K-C, Yung KKY, Leung CKF, Sze KH, Lau SKP, Yuen K-Y (2014) The biosynthetic pathway for a thousand-year-old natural food colorant and citrinin in
Penicillium marneffei. Sci Rep 4:6728. doi:10.1038/srep06728
CrossRef
40.
Yu J-H (2006) Heterotrimeric G protein signaling and RGSs in
Aspergillus nidulans. J Microbiol 44:145–154
41.
Fox EM, Howlett BJ (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487. doi:10.1016/j.mib.2008.10.007
CrossRef
42.
Bayram Ö, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36:1–24. doi:10.1111/j.1574-6976.2011.00285.x
CrossRef
43.
Li L, Shao Y, Li Q, Yang S, Chen F (2010) Identification of
Mga1, a G-protein α-subunit gene involved in regulating citrinin and pigment production in
Monascus ruber M7. FEMS Microbiol Lett 308:108–114. doi:10.1111/j.1574-6968.2010.01992.x
44.
Lai Y, Wang L, Qing L, Chen F (2011) Effects of cyclic AMP on development and secondary metabolites of
Monascus ruber M-7. Lett Appl Microbiol 52:420–426. doi:10.1111/j.1472-765X.2011.03022.x
CrossRef
45.
Lee SS, Lee JH, Lee I (2013) Strain improvement by overexpression of the laeA gene in
Monascus pilosus for the production of
Monascus-fermented rice. J Microbiol Biotechnol 23:959–965. doi:10.4014/jmb.1303.03026
CrossRef
46.
Endo A (1979) Monacolin K, a new hypocholesterolemic agent produced by a
Monascus species. J Antibiot 32:852–854. doi:10.7164/antibiotics.32.852
CrossRef
47.
Goswami S, Vidyarthi AS, Bhunia B, Mandal T (2012) A review on lovastatin and its production. J Biochem Tech 4:581–587
48.
Srianta I, Ristiarini S, Nugerahani I, Sen SK, Zhang BB, Xu GR, Blanc PJ (2014) Recent research and development of
Monascus fermentation products. Int Food Res J 21:1–12
49.
Li G, Kusari S, Spitteller M (2014) Natural products containing ‘decalin’motif in microorganisms. Nat Prod Rep 31:1175–1201. doi:10.1039/C4NP00031E
CrossRef
50.
Chen YP, Tseng CP, Liaw LL, Wang WY, Chen IC, Wu WJ, Wu MD, Yuan GF (2008) Cloning and characterization of monacolin K biosynthetic gene cluster from
Monascus pilosus. J Agric Food Chem 56:5639–5646. doi:10.1021/jf800595k
CrossRef
51.
Chen Y-P, Yuan G-W, Hsieh S-Y, Lin Y-S, Wang W-Y, Liaw L-L, Tseng C-P (2010) Identification of the mokH gene encoding transcriptional factor for the upregulation of monacolin K biosynthesis in
Monascus pilosus. J Agric Food Chem 58:287–293. doi:10.1021/jf903139x
CrossRef
52.
Manzoni M, Rollini M (2002) Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol 58:555–564. doi:10.1007/s00253-002-0932-9
CrossRef
53.
Liu M-T, Li J-J, Shang X-Y, Li S, Li L-L, Luan N, Jin Z-L (2011) Structure elucidation and complete NMR spectral assignment of an unusual aromatic monacolin analog from
Monascus purpureus-fermented rice. Magn Reson Chem 49:129–131. doi:10.1002/mrc.2714
CrossRef
54.
Li B, Wei W, Luan N, Li J, Lao W, Zhang W, Shang X (2015) Structure elucidation and NMR assignments of two unusual isomeric aromatic monacolin analogs from
Monascus purpureus. Magn Reson Chem 53:233–236. doi:10.1002/mrc.4162
CrossRef
55.
Shimizu T, Kinoshita H, Ishihara S, Sakai K, Nagai S, Nihira T (2005) Polyketide synthase gene responsible for citrinin biosynthesis in
Monascus purpureus. Appl Environ Microbiol 71:3453–3457. doi:10.1128/AEM.71.7.3453-3457
CrossRef
56.
Li YP, Xu Y, Huang ZB (2012) Isolation and characterization of the citrinin biosynthetic gene cluster from
Monascus aurantiacus. Biotechnol Lett 34:131–136. doi:10.1007/s10529-011-0745-y
CrossRef
57.
Hajajj H, Klaébé A, Loret MO, Goma G, Blanc PJ, François J (1999) Biosynthetic pathway of citrinin in the filamentous fungus
Monascus ruber as revealed by
13C nuclear magnetic resonance. Appl Environ Microbiol 65:311–314
58.
Wang Y-Z, Ju X-L, Zhou Y-G (2005) The variability of citrinin production in
Monascus type cultures. Food Microbiol 22:145–148. doi:10.1016/j.fm.2004.01.006
CrossRef
59.
Shimizu T, Kinoshita H, Nihira T (2007) Identification and in vivo functional analysis by gene disruption of ctnA, an activator gene involved in citrinin biosynthesis in
Monascus purpureus. Appl Environ Microbiol 73:5097–5103. doi:10.1128/AEM.01979-06
CrossRef
60.
Li YP, Pan YF, Zou LH, Xu Y, Huang ZB, He QH (2013) Lower citrinin production by gene disruption of ctnB involved in cintrinin biosynthesis in
Monascus aurantiacus LiAS3.4384. J Agric Food Chem 61:7397–7402. doi:10.1021/jf400879s
CrossRef
61.
Burt WR (1982) Identification of coprogen B and its breakdown products from
Histoplasma capsulatum. Infect Immun 35:990–996
62.
Silva-Bailão MG, Bailão EFLC, Lechner BE, Gauthier GM, Lindner H, Bailão AM, Haas H, Soares CMA (2014) Hydroxamate production as a high affinity iron acquisition mechanism in
Paracoccidioides spp. PLoS One 9(8), e105805. doi:10.1371/journal.pone.0105805
CrossRef
63.
Lee BH, Pan T-M (2013) Dimerumic acid, a novel antioxidant identified from
Monascus-fermented products exerts chemoprotective effects: mini review. J Funct Foods 5:2–9. doi:10.1016/j.jff.2012.11.009
CrossRef
64.
Kumar S, Punekar NS (1997) The metabolism of 4-aminobutyrate (GABA) in fungi. Mycol Res 101:403–409. doi:10.1017/S0953756296002742
CrossRef
65.
Mead O, Thynne E, Winterberg B, Solomon PS (2013) Characterising the role of GABA and its metabolism in the wheat pathogen
Stagonospora nodorum. PLoS One 8(11), e78368. doi:10.1371/journal.pone.0078368
CrossRef
66.
Osmanova N, Schultze W, Ahoub N (2010) Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev 9:315–342. doi:10.1007/s11101-010-9171-3
CrossRef
67.
Martínková L, Patáková-Jůzlová P, Křen V, Kučerová Z, Havlíček V, Olšovský P, Hovorka O, Říhová B, Veselý D, Veselá D, Ulrichová J, Přikrylová V (1999) Biological activities of oligoketide pigments of
Monascus purpureus. Food Addit Contam 16:15–24. doi:10.1080/026520399284280
CrossRef
68.
Nozaki H, Date S, Kondo H, Kiyohara H, Takaoka D, Tada T, Nakayama M (1991) Ankalactone, a new α, β-unsaturated γ-lactone from
Monascus anka. Agric Biol Chem 55:899–900. doi:10.1080/00021369.1991.10870637
69.
Martínková L, Jůzlová P, Veselý D (1995) Biological activity of polyketide pigments produced by the fungus
Monascus. J Appl Bacteriol 79:609–616. doi:10.1111/j.1365-2672.1995.tb00944.x
CrossRef
70.
Vendruscolo F, Tosin I, Giachini AJ, Schmidell W, Ninow JL (2014) Antimicrobial activity of
Monascus pigments produced in submerged fermentation. J Food Process Preserv 38:1860–1865. doi:10.1111/jfpp.12157
CrossRef
71.
Kim C, Jung H, Kim JO, Shin CS (2006) Antimicrobial activities of amino acid derivatives of
Monascus pigments. FEMS Microbiol Lett 264:117–124. doi:10.1111/j.1574-6968.2006.00451.x
CrossRef
72.
Shi YC, Pan TM (2011) Benefitial effects of
Monascus purpureus NTU 568-fermented products: a review. Appl Microbiol Biotechnol 90:1207–1217. doi:10.1007/s00253-011-3202-x
CrossRef
73.
Lee BH, Pan TM (2012) Benefits of
Monascus fermented product for hypertension prevention: a review. Appl Microbiol Biotechnol 94:1151–1161. doi:10.1007/s00253-012-4076-2
CrossRef
74.
Lee CL, Pan TM (2011) Red mold fermented products and Alzheimer’s disease: a review. Appl Microbiol Biotechnol 91:461–469. doi:10.1007/s00253-011-3413-1
CrossRef
75.
Hsu WH, Pan TM (2012)
Monascus purpureus fermented products and oral cancer: a review. Appl Microbiol Biotechnol 93:1831–1842. doi:10.1007/s00253-012-3891-9
CrossRef
76.
Lee CL, Wang JJ, Kuo SL, Pan TM (2006)
Monascus fermentation of discorea for increasing the production of cholesterol-lowering agent-monacolin K and antiinflammation agent-monascin. Appl Microbiol Biotechnol 72:1254–1262. doi:10.1007/s00253-006-0404-8
CrossRef
77.
Lee CL, Kung YH, Wu CL, Hsu YW, Pan TM (2010) Monascin and ankaflavin act as novel hypolipidemic and high-density lipoprotein cholesterol-raising agents in red mold dioscorea. J Agric Food Chem 58:9013–9019. doi:10.1021/jf101982v
CrossRef
78.
Hsu WH, Pan TM (2014) Treatment of metabolic syndrome with ankaflavin, a secondary metabolite isolated from the edible fungus
Monascus sp. Appl Microbiol Biotechnol 98:4853–4863. doi:10.1007/s00253-014-5716-5
CrossRef
79.
Bianchi A (2005) Extracts of
Monascus purpureus beyond statins- profile of efficacy and safety of the use of extracts of
Monascus purpureus. Chin J Integr Med 11:309–313. doi:10.1007/BF02835797
CrossRef
80.
Yu C-C, Wang J-J, Lee C-L, Lee S-H, Pan T-M (2008) Safety and mutagenicity evaluation of nanoparticulate red mold rice. J Agric Food Chem 56:11038–11048. doi:10.1021/jf801335u
CrossRef
81.
Kumari HPM, Naidu KA, Vishwanatha S, Narasimhamurthy K, Vijayalakshmi G (2009) Safety evaluation of
Monascus purpureus red mould rice in albino rats. Food Chem Toxicol 47:1739–1746. doi:10.1016/j.fct.2009.04.038
CrossRef
82.
Lin YL, Wang TH, Lee MH, Su NW (2008) Biologically active components and nutraceuticals in the
Monascus-fermented rice: a review. Appl Microbiol Biotechnol 77:965–973. doi:10.1007/s00253-007-1256-6
CrossRef
83.
Heber D, Yip I, Ashley JM, Elashoff DA, Elashoff RM, Go VL (1999) Cholesterol-lowering effects of a proprietary Chinese red-yeast-rice supplements. Am J Clin Nutr 69:231–236
84.
Becker DJ, Gordon RY, Halbert SC, French B, Morris PB, Rader DJ (2009) Red yeast rice for dyslipidemia in statin-intolerant patients: a randomized trial. Ann Intern Med 16:830–839. doi:10.7326/0003-4819-150-12-200906160-00006
CrossRef
86.
Xie X, Wang Y, Zhang S, Zhang G, Xu Y, Bi H, Daugherty A, Wang JA (2012) Chinese red yeast rice attenuates the development of angiotensin II-induced abdominal aortic aneurysm and atherosclerosis. J Nutr Biochem 23:549–556. doi:10.1016/j.jnutbio.2011.02.011
CrossRef
87.
Schneweis I, Meyer K, Hörmansdorfer S, Bauer J (2001) Metabolites of
Monascus ruber in silages. J Anim Physiol Anim Nutr 85:38–44. doi:10.1046/j.1439-0396.2001.00300.x
CrossRef
88.
Nuraini S, Latif SA (2012) Fermented product by
Monascus purpureus in poultry diet: effect on laying performance and egg quality. Pak J Nutr 11:507–510
CrossRef
89.
Sabater-Vilar M, Maas RFM, Fink-Gremmels J (1999) Mutagenicity of commercial
Monascus fermentation products and the role of citrinin contamination. Mutat Res 444:7–16. doi:10.1016/S1383-5718(99)00095-9
CrossRef
90.
Flajs D, Peraica M (2009) Toxicological properties of citrinin. Arch Ind Hyg Toxicol 60:457–464
91.
EFSA Panel on Contaminants in the Food Chain (CONTAM) (2012) Scientific opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA J 10:2605. doi:10.2903/j.efsa.2012.2605
CrossRef
92.
Kim HJ, Ji GE, Lee IH (2007) Natural occurring levels of citrinin and monakolin K in Korean
Monascus fermentation products. Food Sci Biotechnol 16:142–145
93.
Fu G, Xu Y, Li Y, Tan W (2007) Construction of a replacement vector to disrupt pksCT gene for the mycotoxin citrinin biosynthesis in
Monascus aurantiacus and maintain food red pigment production. Asia Pac J Clin Nutr 16:137–142
94.
Mazumder PM, Mazumder R, Mazumder A, Sasmal D (2002) Antimicrobial activity of the mycotoxin citrinin obtained from the fungus
Penicillium citrinum. Anc Sci Life 21:1–6
95.
Wong HC, Koehler PE (1981) Production and isolation of an antibiotic from
Monascus purpureus and its relationship to pigment production. J Food Sci 46:589–592. doi:10.1111/j.1365-2621.1981.tb04917.x
CrossRef
96.
Jia XQ, Xu ZN, Zhou LP, Sung CK (2010) Elimination of the mycotoxin citrinin production in the industrial important strain
Monascus purpureus SM001. Metab Eng 12:1–7. doi:10.1016/j.ymben.2009.08.003
CrossRef
97.
Zhong S, Zhang X, Wang Z (2015) Preparation and characterization of yellow
Monascus pigments. Sep Purif Technol 150:139–144. doi:10.1016/j.seppur.2015.06.040
CrossRef
98.
Zhou G, Fu L, Li X (2015) Optimisation of ultrasound-assisted extraction conditions for maximal recovery of active monacolins and removal of toxic citrinin from red yeast rice by a full factorial design coupled with response surface methodology. Food Chem 170:186–192. doi:10.1016/j.foodchem.2014.08.080
CrossRef
99.
Wu CL, Kuo YH, Lee CL, Hsu YW, Pan TM (2011) Synchronous high-performance liquid chromatography with a photodiode array detector and mass spectrometry for the determination of citrinin, monascin, ankaflavin, and the lactone and acid forms of monacolin K in red mold rice. J AOAC Int 94:179–190
100.
Rahmani A, Jinap S, Soleimany F (2009) Qualitative and quantitative analysis of mycotoxins. Compr Rev Food Sci Food Saf 8:202–251. doi:10.1111/j.1541-4337.2009.00079.x
CrossRef
101.
Mornar A, Sertic M, Nigović B (2013) Development of a rapid LC/DAD/FLD/MS
n method for the simultaneous determination of monacolins and citrinin in red fermented rice products. J Agric Food Chem 62:1072–1080. doi:10.1021/jf304881g
CrossRef
102.
Ji X, Xu J, Wang X, Qi P, Wei W, Chen X, Li R, Zhou Y (2015) Citrinin determination in red fermented rice products by optimized extraction method coupled to liquid chromatography tandem mass spectrometry (LC-MS/MS). J Food Sci 80:1438–1444. doi:10.1111/1750-3841.12900
CrossRef
103.
Wang W, Chen Q, Zhang X, Zhang H, Huang Q, Li D, Yao J (2014) Comparison of extraction methods for analysis of citrinin in red fermented rice. Food Chem 157:408–412. doi:10.1016/j.foodchem.2014.02.060
CrossRef
104.
Meister U (2001) Influence of extract purification on the recovery of citrinin in HPLC analysis. Mycotoxin Res 2:165–169. doi:10.1007/BF03036428
CrossRef
105.
Dohnal V, Pavlíková L, Kuča K (2010) rapid and sensitive method for citrinin determination using high-performance liquid chromatography with fluorescence detection. Anal Lett 43:786–792. doi:10.1080/00032710903486252
CrossRef
106.
Morovján G, Szakács G, Fekete J (1997) Monitoring of selected metabolites and biotransformation products from fermentation broths by high-performance liquid chromatography. J Chromatogr A 763:165–172. doi:10.1016/S0021-9673(96)00875-8
CrossRef
107.
Zheng Y, Xin Y, Guo Y (2009) Study on the fingerprint profile of
Monascus products with HPLC-FD, PAD and MS. Food Chem 113:705–711. doi:10.1016/j.foodchem.2008.07.105
CrossRef
108.
Reinhard H, Zimmerli B (1999) Reversed-phase liquid chromatographic behaviour of the mycotoxins citrinin and ochratoxin A. J Chromatogr A 862:147–159. doi:10.1016/S0021-9673(99)00929-2
CrossRef
109.
Singh DK, Ganbold EO, Cho EM, Cho KH, Kim D, Choo J, Kim S, Lee CM, Yang SI, Joo SW (2014) Detection of the mycotoxin citrinin using silver substrates and Raman spectroscopy. J Hazard Mater 265:89–95. doi:10.1016/j.jhazmat.2013.11.041
CrossRef
110.
Zachetti VGL, Granero AM, Robledo SN, Zon MA, Fernández H (2013) Development of an amperometric biosensor based on peroxidases to quantify citrinin in rice samples. Bioelectrochemistry 91:37–43. doi:10.1016/j.bioelechem.2012.12.004
CrossRef
111.
Li YN, Wu HY, Guo LQ, Zheng YQ, Guo YH (2012) Microsphere-based flow cytometric immunoassay for the determination of citrinin in red yeast rice. Food Chem 134:2540–2545. doi:10.1016/j.foodchem.2012.04.072
CrossRef
112.
Vrabceva T, Usleber E, Dietrich R, Märtlbauer E (2000) Co-occurrence of Ochratoxin A and citrinin in cereals from Bulgarian villages with a history of Balkan endemic nephropathy. J Agric Food Chem 48:2483–2488. doi:10.1021/jf990891y
CrossRef
113.
Vázquez BI, Fente C, Franco CM, Quinto E, Cepeda A, Prognon P (1997) Rapid semi-quantitative fluorimetric determination of citrinin in fungal cultures isolated from cheese and cheese factories. Lett Appl Microbiol 24:397–400. doi:10.1046/j.1472-765X.1997.00148.x
CrossRef
114.
Xu B, Jia X, Gu L, Sung C (2006) Review on the qualitative and quantitative analysis of mycotoxin citrinin. Food Control 17:271–285. doi:10.1016/j.foodcont.2004.10.012
CrossRef
115.
Liao CD, Chem YC, Lin HY, Chiueh LC, Shih DYC (2014) Incidence of citrinin in red yeast rice and various commercial
Monascus products in Taiwan from 2009 to 2012. Food Control 38:178–183. doi:10.1016/j.foodcont.2013.10.016
CrossRef
116.
Feng Y, Shao Y, Zhou Y, Chen F (2014) Monacolin K production by citrinin-free
Monascus pilosus MS-1 and fermentation process monitoring. Eng Life Sci 14:538–545. doi:10.1002/elsc.201300128
CrossRef
117.
Avula B, Cohen PA, Wang YH, Sagi S, Feng W, Wang M, Zweigenbaum J, Shuangcheng M, Khan IA (2014) Chemical profiling and quantification of monacolins and citrinin in red yeast rice commercial raw materials and dietary supplements using liquid chromatography-accurate QToF mass spectrometry: chemometrics application. J Pharmaceut Biomed 100:243–253. doi:10.1016/j.jpba.2014.07.039
CrossRef
118.
Pattanagul P, Pinthong R, Phianmongkhol A, Tharatha S (2008) Mevinolin, citrinin and pigments of adlay angkak fermented by
Monascus sp. Int J Food Microbiol 126:20–23. doi:10.1016/j.ijfoodmicro.2008.04.019
CrossRef
119.
Ma J, Li Y, Ye Q, Li J, Hua Y, Ju D, Zhang D, Cooper R, Chang M (2000) Constituents of red yeast rice, a traditional Chinese food and medicine. J Agric Food Chem 48:5220–5225. doi:10.1021/jf000338c
CrossRef
120.
Lee CL, Wang JJ, Pan TM (2006) Synchronous analysis method for detection of citrinin and the lactone and acid forms of monacolin K in red mold rice. J AOAC Int 89(3):669–677
121.
Nigović B, Sertić M, Mornar A (2013) Simultaneous determination of lovastatin and citrinin in red yeast rice supplements by micellar capillary chromatography. Food Chem 138:531–538. doi:10.1016/j.foodchem.2012.10.104
CrossRef
122.
Huang Z, Xu Y, Li Y, Wang Y (2010) Conversion investigation for lovastatin and its derivatives by HPLC. J Chromatogr Sci 48(8):631–636
CrossRef
123.
Li Y, Zhang F, Wang Z, Hu Z (2004) Identification and chemical profiling of monacolins in red yeast rice using high-performance liquid chromatography with photodiode array detector and mass spectrometry. J Pharmaceut Biomed 35:1101–1112. doi:10.1016/j.jpba.2004.04.004
CrossRef
124.
Chen G, Shi K, Song D, Quan L, Wu Z (2015) The pigment characteristic and productivity shifting in high cell density culture of
Monascus anka mycelia. BMC Biotechnol 15:72. doi:10.1186/s12896-015-0183-3
CrossRef
125.
Shi K, Song D, Chen G, Pistolozzi M, Wu Z, Quan L (2015) Controlling composition and colour characteristics of
Monascus pigments by pH and nitrogen sources in submerged fermentation. J Biosci Bioeng. doi:10.1016/j.jbiosc.2015.01.001
126.
Teng SS, Feldheim W (1998) Analysis of
anka pigments by liquid chromatography with diode array detection and tandem mass spectrometry. Chromatographia 47:529–536. doi:10.1007/BF02467490
CrossRef
127.
Mapari SAS, Meyer AS, Thrane U (2006) Colorimetric characterization for comparative analysis of fungal pigments and natural food colorants. J Agric Food Chem 54:7027–7035. doi:10.1021/jf062094n
CrossRef
128.
Jung H, Kim C, Kim K, Soo C (2003) Colour characteristics of
Monascus pigments derived by fermentation with various amino acids. J Agric Foog Chem 51:1302–1306. doi:10.1021/jf0209387
CrossRef
129.
Hajjaj H, Klaebe A, Loret MO, Tzedakis T, Goma G, Blanc PJ (1997) Production and identification of
N-glucosylrubropunctamine and
N-glucosylmonascorubramine from
Monascus ruber and occurrence of electron donor-acceptor complexes in these red pigments. Appl Environ Microbiol 63(7):2671–2678
130.
Lian X, Wang C, Guo K (2007) Identification of new red pigments produced by
Monascus ruber. Dyes Pigments 73:121–125. doi:10.1016/j.dyepig.2005.11.001
CrossRef
131.
Cheng MJ, Wu MD, Chen YL, Chen IS, Su YS, Yuan GF (2013) Chemical constituents of red yeast rice fermented with the fungus
Monascus pilosus. Chem Nat Compd 49(2):249–252. doi:10.1007/s10600-013-0573-5
CrossRef
132.
Wu MD, Cheng MJ, Yech YJ, Chen YL, Chen KP, Yang PH, Chen IS, Yuan GF (2013) Monascusazaphilones A-C, three new azaphilone analogues isolated from the fungus
Monascus purpureus BCRC 38108. Nat Prod Res 27(13). doi:10.1080/14786419.2012.715289
133.
Paulová L, Patáková P, Brányik T (2014) Advanced fermentation processes. In: Teixeira JA, Vicente AA (eds) Engineering aspects of food biotechnology. CRC Press, Boca Raton
134.
Chiu C-H, Ni K-H, Guu Y-K, Pan T-M (2006) Production of red mold rice using a modified Nagata type koji maker. Appl Microbiol Biotechnol 73:297–304. doi:10.1007/s00253-006-0457-8
CrossRef
135.
Steinkraus KH (1983) Handbook of indigenous fermented foods. Dekker, New York
136.
de Carvalho JC, Soccol CR, Babitha S, Pandey A, Woiciechowski AD (2008) Production of pigments. In: Pandey A, Soccol CR, Laroche C (eds) Current developments in solid-state fermentation. Springer, Delhi
137.
Patáková P (2005) Red yeast rice. In: McGraw-Hill (ed) Yearbook of science and technology. McGraw-Hill, New York
138.
Babitha S, Soccol CR, Pandey A (2006) Jackfruit seed – a novel substrate for the production of
Monascus pigments through solid-state fermentation. Food Technol Biotechnol 44:465–471
139.
Lotong N, Suwaranit P (1990) Fermentation of ang-kak in plastic bags and regulation of pigmentation by initial moisture-content. J Appl Bacteriol 68:565–570. doi:10.1111/j.1365-2672.1990.tb05221.x
CrossRef
140.
Teng SS, Feldheim W (2000) The fermentation of rice for
anka pigment production. J Ind Microbiol Biotech 25:141–146. doi:10.1038/sj.jim.7000044
CrossRef
141.
Velmurugan P, Lee YH, Venil CK, Lakshmanaperumalsamy P, Chae JC, Oh BT (2010) Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. J Biosci Bioeng 109:346–350. doi:10.1016/j.jbiosc.2009.10.003
CrossRef
142.
Babitha S, Carvahlo JC, Soccol CR, Pandey A (2008) Effect of light on growth, pigment production and culture morphology of
Monascus purpureus in solid-state fermentation. World J Microbiol Biotechnol 24:2671–2675. doi:10.1007/s11274-008-9794-3
CrossRef
143.
Chen F, Li F, Qu J, Chen C (2009) Cereal vinegars made by solid-state fermentation in China. In: Solieri L, Giudici P (eds) Vinegars of the world. Springer, Milan, pp 243–259
CrossRef
144.
Pansuriya RC, Singhal RS (2010) Response surface methodology for optimization of production of lovastatin by solid state fermentation. Braz J Microbiol 41:164–172
CrossRef
145.
Ali HKH, Zulkali MMD (2011) Design aspects of bioreactors for solid-state fermentation: a review. Chem Biochem Eng Q 25:255–266
146.
Barrios-Gonzáles J (2012) Solid-state fermentation: physiology of solid medium, its molecular basis and applications. Process Biochem 47:175–185. doi:10.1016/j.procbio.2011.11.016
CrossRef
147.
Miyake T, Uchitomi K, Zhang M-Y, Kono I, Nozaki N, Sammoto H, Inagaki K (2006) Effects of the principal nutrients on lovastatin production by
Monascus pilosus. Biosci Biotechnol Biochem 70:1154–1159. doi:10.1271/bbb.70.1154
CrossRef
148.
Lin TF, Yakushijin K, Buchi GH, Demain AL (1992) Formation of water-soluble
Monascus pigments by biological and semi-synthetic processes. J Ind Microbiol 9:173–179. doi:10.1007/BF01569621
CrossRef
149.
Shepherd D (1977) The relationship between pigment production and sporulation in
Monascus. In: Meyrath J, Bu’lock JD (eds) Biotechnology and fungal differentiation, vol 4, FEMS symposium. Academic, London
150.
Jůzlová P, Martínková L, Lozinski J, Machek F (1994) Ethanol as substrate for pigment production by the fungus
Monascus purpureus. Enzyme Microb Technol 16:996–1001. doi:10.1016/0141-0229(94)90011-6
CrossRef
151.
Orozco SFB, Kilikian BV (2008) Effect of pH on citrinin and red pigments production by
Monascus purpureus CCT3802. World J Microbiol Biotechnol 24:263–268. doi:10.1007/s11274-007-9465-9
CrossRef
152.
Zhou B, Wang J, Pu Y, Zhu M, Liu S, Liang S (2009) Optimization of culture medium for yellow pigments production with
Monascus anka mutant using response surface methodology. Eur Food Res Technol 228:895–901. doi:10.1007/s00217-008-1002-z
CrossRef
153.
Sani J, Nopharatana M, Kitsubun P, Vichithsoonkul T, Tongta A (2013) Statistical optimization for monacolin K and yellow pigment production and citrinin reduction by
Monascus purpureus solid-state fermentation. J Microbiol Biotechnol 23:364–374
CrossRef
154.
Ahmad M, Panda BP (2014) Optimization of red pigment production by
Monascus purpureus MTCC 369 under solid-state fermentation using response surface methodology. Songlanakarin J Sci Technol 36:439–444
155.
Kumari M, Dhale MA, Govindaswami V (2012) Optimization of monacolin K production by
Monascus purpureus MTCC 410 in submerged fermentation. Int J Food Eng 8. doi:10.1515/1556-3758.1420
156.
Fabre CE, Santerre AL, Loret MO, Baberian R, Pareilleux A, Goma G, Blanc PJ (1993) Production and food application of the red pigment of
Monascus ruber. J Food Sci 58:1099–1102. doi:10.1111/j.1356-2621.1993.tb06123.x
CrossRef
157.
Yu X, Wu H, Zhang J (2015) Effect of
Monascus as a nitrite substitute on color, lipid oxidation and proteolysis of fermented meat mince. Food Sci Biotechnol 24:575–581. doi:10.1007/s10068-015-0075-2
CrossRef
158.
Chen MB, Liu H, Zhen D, Fang S (2011) Research on the esterification property of esterase produced by
Monascus sp. Afr J Biotechnol 10:5166–5172
CrossRef
159.
Yasuda M (2011) Fermented tofu, tofuyo. In: Ng T-B (ed) Soybean – biochemistry, chemistry and physiology. In Tech, Rijeka, Croatia (Europe). pp 299–321
160.
Yasuda M, Tachibana S, Kuba-Miyara M (2012) Biochemical aspects of red koji and tofuyo prepared using
Monascus fungi. Appl Microbiol Biotechnol 96:49–60. doi:10.1007/s00253-012-4300-0
CrossRef
161.
Yin L-J, Lu M-C, Pan C-L, Jiang S-T (2005) Effect of
Monascus fermentation on the characteristics of mackerel mince. J Food Sci 70:S66–S72. doi:10.1111/j.1365-2621.2005.tb09067.x
CrossRef
162.
Jiang S-T, Chen W-M (2007) Quality improvement in
Monascus fermented fish paste and steamed rice. J Fish Soc Taiwan 34:225–236