Skip to main content

2019 | OriginalPaper | Buchkapitel

Monte Carlo Dosimetry of Organ Doses from a Sweeping-Beam Total Body Irradiation Technique: Feasibility and First Results

verfasst von : Levi Burns, Tony Teke, I. Antoniu Popescu, Cheryl Duzenli

Erschienen in: World Congress on Medical Physics and Biomedical Engineering 2018

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Total body irradiation (TBI) is a radiation treatment often purposed to suppress the immune system prior to a bone marrow transplant. Several toxicities can arise in TBI, and high-quality dose volume data for organs at risk are required if one is considering any change from a well-established technique. We present a novel Monte Carlo (MC) dosimetry technique to acquire this data based on our current TBI technique that accounts for a sweeping-beam Cobalt-60 delivery, a stationary flattening filter, patient-specific lung compensators, and two patient treatment positions. For each patient, a virtual MC phantom is created including the planning CT image in each treatment position (supine and prone). The results from dose simulations on each phantom were summed together geometrically with a deformable registration tool. Dose volume statistics for lungs, liver, thyroid, and kidneys are obtained. The preliminary results of a retrospective study using this technique on patients who have received TBI at our clinic indicate that, for a total body prescription dose of 12 Gy ± 10%, the mean body dose ranged from 11.19 to 12.15 Gy with smaller patients receiving lower mean body doses than larger patients. The mean dose delivered to the thyroid was the highest of the contoured organs receiving up to 12.84 Gy, and the lung doses were the most heterogeneous, with standard deviations up to 0.73 Gy in individual patients. This high-quality dose data shows promise for use in both routine quality assurance of our current technique, and to provide baseline data for development of a new technique. The technique could also be adapted to TBI techniques at other clinics that include compensators, flattening filters, moving beams, and/or multiple treatment positions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hill-Kayser CE, Plastaras JP, Tochner Z, Glatstein E: TBI during BM and SCT: review of the past, discussion of the present and consideration of future directions. Bone Marrow Transplantation 46(4), 475–484 (2011). Hill-Kayser CE, Plastaras JP, Tochner Z, Glatstein E: TBI during BM and SCT: review of the past, discussion of the present and consideration of future directions. Bone Marrow Transplantation 46(4), 475–484 (2011).
2.
Zurück zum Zitat Wills C, Cherian S, Yousef J, Wang K, Mackley HB: Total body irradiation: a practical review. Appl Rad Oncol 5(2), 11–17 (2016). Wills C, Cherian S, Yousef J, Wang K, Mackley HB: Total body irradiation: a practical review. Appl Rad Oncol 5(2), 11–17 (2016).
3.
Zurück zum Zitat Studinski RCN, Fraser DJ, Samant RS, MacPherson MS: Current practice in total-body irradiation: results of a Canada-wide survey. Current Oncology 24(3) (2017). Studinski RCN, Fraser DJ, Samant RS, MacPherson MS: Current practice in total-body irradiation: results of a Canada-wide survey. Current Oncology 24(3) (2017).
4.
Zurück zum Zitat Geibel S, Miszczyk L, Slosarek K, Moukhtari L, Ciceri F, Esteve J, et al: Extreme heterogeneity of myeloablative total body irradiation techniques in clinical practice. Cancer 120(17), 2760–2765 (2014). Geibel S, Miszczyk L, Slosarek K, Moukhtari L, Ciceri F, Esteve J, et al: Extreme heterogeneity of myeloablative total body irradiation techniques in clinical practice. Cancer 120(17), 2760–2765 (2014).
5.
Zurück zum Zitat Kelsey CR, Horwitz ME, Chino JP, Craciunescu O, Steffey B, Folz RJ, et al: Severe pulmonary toxicity after myeloablative conditioning using total body irradiation: an assessment of risk factors. Int J Radiat Oncol Biol Phys 81(3), 812–828 (2011). Kelsey CR, Horwitz ME, Chino JP, Craciunescu O, Steffey B, Folz RJ, et al: Severe pulmonary toxicity after myeloablative conditioning using total body irradiation: an assessment of risk factors. Int J Radiat Oncol Biol Phys 81(3), 812–828 (2011).
6.
Zurück zum Zitat Charakova R, Muntzing K, Krantz M, Hedin E, Hertzman S: Monte Carlo optimization of total body irradiation in a phantom and patient geometry. Phys Med Biol 58(8), 2461–2469 (2013). Charakova R, Muntzing K, Krantz M, Hedin E, Hertzman S: Monte Carlo optimization of total body irradiation in a phantom and patient geometry. Phys Med Biol 58(8), 2461–2469 (2013).
7.
Zurück zum Zitat Charakova R, Krantz M: A Monte Carlo evaluation of beam characteristics for total body irradiation at extended treatment distances. J Appl Clin Med Phys 15(3), 182–189 (2014). Charakova R, Krantz M: A Monte Carlo evaluation of beam characteristics for total body irradiation at extended treatment distances. J Appl Clin Med Phys 15(3), 182–189 (2014).
8.
Zurück zum Zitat Serban M, Seuntjens J, Roussin E, Alexander A, Tremblay JR, Wierzbicki W: Patient-specific compensation for Co-60 TBI treatments based on Monte Carlo design: A feasibility study. Phys Med 32(1), 67–75 (2016). Serban M, Seuntjens J, Roussin E, Alexander A, Tremblay JR, Wierzbicki W: Patient-specific compensation for Co-60 TBI treatments based on Monte Carlo design: A feasibility study. Phys Med 32(1), 67–75 (2016).
9.
Zurück zum Zitat Liu X, Lack D, Rakowski JT, Knill C, Snyder M: Fast Monte Carlo simulation for total body irradiation using a 60Co teletherapy unit. J Appl Clin Med Phys 14(3), 133–149 (2013). Liu X, Lack D, Rakowski JT, Knill C, Snyder M: Fast Monte Carlo simulation for total body irradiation using a 60Co teletherapy unit. J Appl Clin Med Phys 14(3), 133–149 (2013).
10.
Zurück zum Zitat Sherali H, El-Khatib E: Total body irradiation with a sweeping 60-Cobalt beam. Int J Radiat Oncol Biol Phys 33(2), 493–497 (1995). Sherali H, El-Khatib E: Total body irradiation with a sweeping 60-Cobalt beam. Int J Radiat Oncol Biol Phys 33(2), 493–497 (1995).
11.
Zurück zum Zitat Rogers DWO, Faddegon BA, Ding GX, Ma CM, We J, Mackie TR: BEAM: A Monte Carlo code to simulate radiotherapy treatment units. Med Phys 22(5), 503–524 (1995). Rogers DWO, Faddegon BA, Ding GX, Ma CM, We J, Mackie TR: BEAM: A Monte Carlo code to simulate radiotherapy treatment units. Med Phys 22(5), 503–524 (1995).
12.
Zurück zum Zitat Kawrakow I: Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys 27(3), 485–498 (2000). Kawrakow I: Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys 27(3), 485–498 (2000).
13.
Zurück zum Zitat Walters B, Kawrakow I, Rogers DWO: DOSXYZnrc users manual Report PIRS-794. National Research Council of Canada (2017). Walters B, Kawrakow I, Rogers DWO: DOSXYZnrc users manual Report PIRS-794. National Research Council of Canada (2017).
14.
Zurück zum Zitat Mora GM, Maio A, Rogers DWO: Monte Carlo simulation of a typical 60Co therapy source. Med Phys 26(11), 2494–2502 (1999). Mora GM, Maio A, Rogers DWO: Monte Carlo simulation of a typical 60Co therapy source. Med Phys 26(11), 2494–2502 (1999).
15.
Zurück zum Zitat Lobo J, Popescu IA: Two new DOSXYZnrc sources for 4D Monte Carlo simulations of continuously variable beam configurations, with applications to RapidArc, VMAT, TomoTherapy and CyberKnife. Phys Med Biol 55(16), 4431–4443 (2010). Lobo J, Popescu IA: Two new DOSXYZnrc sources for 4D Monte Carlo simulations of continuously variable beam configurations, with applications to RapidArc, VMAT, TomoTherapy and CyberKnife. Phys Med Biol 55(16), 4431–4443 (2010).
16.
Zurück zum Zitat Kawrakow I: On the de-noising of Monte Carlo calculated dose distributions. Phys Med Biol 47(17), 3087–3103 (2002). Kawrakow I: On the de-noising of Monte Carlo calculated dose distributions. Phys Med Biol 47(17), 3087–3103 (2002).
17.
Zurück zum Zitat Popescu IA, Shaw CP, Zavgorodni SF, Beckham WA. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams. Phys Med Biol 50(14), 3375–3392 (2005). Popescu IA, Shaw CP, Zavgorodni SF, Beckham WA. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams. Phys Med Biol 50(14), 3375–3392 (2005).
18.
Zurück zum Zitat Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, Nath R, Rogers DWO: AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys 26(9), 1847–1870 (1999). Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, Nath R, Rogers DWO: AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys 26(9), 1847–1870 (1999).
19.
Zurück zum Zitat Teke T: Monte Carlo techniques for patient specific verification of complex radiation therapy treatments including TBI, VMAT and SBRT lung. Ph.D thesis (not published), University of British Columbia (2012). Teke T: Monte Carlo techniques for patient specific verification of complex radiation therapy treatments including TBI, VMAT and SBRT lung. Ph.D thesis (not published), University of British Columbia (2012).
Metadaten
Titel
Monte Carlo Dosimetry of Organ Doses from a Sweeping-Beam Total Body Irradiation Technique: Feasibility and First Results
verfasst von
Levi Burns
Tony Teke
I. Antoniu Popescu
Cheryl Duzenli
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-9023-3_76

Neuer Inhalt