Skip to main content
Erschienen in: Journal of Materials Science 27/2020

22.06.2020 | Metals & corrosion

Monte Carlo simulation of grain refinement during friction stir processing

verfasst von: F. Khodabakhshi, H. Aghajani Derazkola, A. P. Gerlich

Erschienen in: Journal of Materials Science | Ausgabe 27/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A procedure combining computational fluid dynamics modeling/Monte Carlo simulation was implemented to predict grain refinement during friction stir processing (FSP) of an Al–Mg alloy. Based on the critical parameters during FSP treatment such as rotational tool speed (w), and traverse velocity (v), the thermal and strain rate contours were simulated, and used as inputs for a statistical model of dynamic recrystallization. Afterward, the simulated grain structures were verified experimentally by electron backscattering diffraction analysis. FSP generated equiaxed grains with average sizes in the range of 3–10 µm depending on the heat input index in terms of w/v ratios in the range of 4–28 rev.min/mm. A correlation between simulated and experimentally validated grain structures is observed, with crystallographic textures consistent with shear strain induced preferred orientations with a dominant {112} <110> component.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50(1–2):1–78 Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50(1–2):1–78
2.
Zurück zum Zitat Mishra RS, Ma ZY, Charit I (2003) Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A 341(1–2):307–310 Mishra RS, Ma ZY, Charit I (2003) Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A 341(1–2):307–310
3.
Zurück zum Zitat Khodabakhshi F, Gerlich AP (2018) Potentials and strategies of solid-state additive friction-stir manufacturing technology: a critical review. J Manuf Process 36:77–92 Khodabakhshi F, Gerlich AP (2018) Potentials and strategies of solid-state additive friction-stir manufacturing technology: a critical review. J Manuf Process 36:77–92
4.
Zurück zum Zitat Khodabakhshi F, Marzbanrad B, Shah LH, Jahed H, Gerlich AP (2017) Friction-stir processing of a cold sprayed AA7075 coating layer on the AZ31B substrate: structural homogeneity, microstructures and hardness. Surf Coat Technol 331(Supplement C):116–128 Khodabakhshi F, Marzbanrad B, Shah LH, Jahed H, Gerlich AP (2017) Friction-stir processing of a cold sprayed AA7075 coating layer on the AZ31B substrate: structural homogeneity, microstructures and hardness. Surf Coat Technol 331(Supplement C):116–128
5.
Zurück zum Zitat Khodabakhshi F, Marzbanrad B, Shah LH, Jahed H, Gerlich AP (2019) Surface modification of a cold gas dynamic spray-deposited titanium coating on aluminum alloy by using friction-stir processing. J Therm Spray Technol 28(6):1185–1198 Khodabakhshi F, Marzbanrad B, Shah LH, Jahed H, Gerlich AP (2019) Surface modification of a cold gas dynamic spray-deposited titanium coating on aluminum alloy by using friction-stir processing. J Therm Spray Technol 28(6):1185–1198
6.
Zurück zum Zitat Khodabakhshi F, Marzbanrad B, Yazdanmehr A, Jahed H, Gerlich AP (2019) Tailoring the residual stress during two-step cold gas spraying and friction-stir surface integration of titanium coating. Surf Coat Technol 380:125008 Khodabakhshi F, Marzbanrad B, Yazdanmehr A, Jahed H, Gerlich AP (2019) Tailoring the residual stress during two-step cold gas spraying and friction-stir surface integration of titanium coating. Surf Coat Technol 380:125008
7.
Zurück zum Zitat Khodabakhshi F, Simchi A, Kokabi AH, Gerlich AP, Nosko M (2015) Effects of stored strain energy on restoration mechanisms and texture components in an aluminium–magnesium alloy prepared by friction stir processing. Mater Sci Eng A 642:204–214 Khodabakhshi F, Simchi A, Kokabi AH, Gerlich AP, Nosko M (2015) Effects of stored strain energy on restoration mechanisms and texture components in an aluminium–magnesium alloy prepared by friction stir processing. Mater Sci Eng A 642:204–214
8.
Zurück zum Zitat Morishige T, Hirata T, Tsujikawa M, Higashi K (2010) Comprehensive analysis of minimum grain size in pure aluminum using friction stir processing. Mater Lett 64(17):1905–1908 Morishige T, Hirata T, Tsujikawa M, Higashi K (2010) Comprehensive analysis of minimum grain size in pure aluminum using friction stir processing. Mater Lett 64(17):1905–1908
9.
Zurück zum Zitat Sharma V, Prakash U, Kumar BVM (2015) Surface composites by friction stir processing: a review. J Mater Process Technol 224:117–134 Sharma V, Prakash U, Kumar BVM (2015) Surface composites by friction stir processing: a review. J Mater Process Technol 224:117–134
10.
Zurück zum Zitat Ajay Kumar P, Madhu HC, Pariyar A, Perugu CS, Kailas SV, Garg U, Rohatgi P (2020) Friction stir processing of squeeze cast A356 with surface compacted graphene nanoplatelets (GNPs) for the synthesis of metal matrix composites. Mater Sci Eng A 769:138517 Ajay Kumar P, Madhu HC, Pariyar A, Perugu CS, Kailas SV, Garg U, Rohatgi P (2020) Friction stir processing of squeeze cast A356 with surface compacted graphene nanoplatelets (GNPs) for the synthesis of metal matrix composites. Mater Sci Eng A 769:138517
11.
Zurück zum Zitat Xue P, Li WD, Wang D, Wang WG, Xiao BL, Ma ZY (2016) Enhanced mechanical properties of medium carbon steel casting via friction stir processing and subsequent annealing. Mater Sci Eng A 670:153–158 Xue P, Li WD, Wang D, Wang WG, Xiao BL, Ma ZY (2016) Enhanced mechanical properties of medium carbon steel casting via friction stir processing and subsequent annealing. Mater Sci Eng A 670:153–158
12.
Zurück zum Zitat Khodabakhshi F, Ghasemi Yazdabadi H, Kokabi AH, Simchi A (2013) Friction stir welding of a P/M Al-Al2O3 nanocomposite: microstructure and mechanical properties. Mater Sci Eng A 585:222–232 Khodabakhshi F, Ghasemi Yazdabadi H, Kokabi AH, Simchi A (2013) Friction stir welding of a P/M Al-Al2O3 nanocomposite: microstructure and mechanical properties. Mater Sci Eng A 585:222–232
13.
Zurück zum Zitat Khodabakhshi F, Simchi A, Kokabi AH, Gerlich AP (2016) Similar and dissimilar friction-stir welding of an PM aluminum-matrix hybrid nanocomposite and commercial pure aluminum: microstructure and mechanical properties. Mater Sci Eng A 666:225–237 Khodabakhshi F, Simchi A, Kokabi AH, Gerlich AP (2016) Similar and dissimilar friction-stir welding of an PM aluminum-matrix hybrid nanocomposite and commercial pure aluminum: microstructure and mechanical properties. Mater Sci Eng A 666:225–237
14.
Zurück zum Zitat Khodabakhshi F, Simchi A, Kokabi AH, Gerlich AP, Nosko M, Švec P (2017) Influence of hard inclusions on microstructural characteristics and textural components during dissimilar friction-stir welding of an PM Al–Al2O3–SiC hybrid nanocomposite with AA1050 alloy. Sci Technol Weld Join 22(5):412–427 Khodabakhshi F, Simchi A, Kokabi AH, Gerlich AP, Nosko M, Švec P (2017) Influence of hard inclusions on microstructural characteristics and textural components during dissimilar friction-stir welding of an PM Al–Al2O3–SiC hybrid nanocomposite with AA1050 alloy. Sci Technol Weld Join 22(5):412–427
15.
Zurück zum Zitat Khodabakhshi F, Gerlich A, Švec P (2017) Fabrication of a high strength ultra-fine grained Al–Mg–SiC nanocomposite by multi-step friction-stir processing. Mater Sci Eng A 698:313–325 Khodabakhshi F, Gerlich A, Švec P (2017) Fabrication of a high strength ultra-fine grained Al–Mg–SiC nanocomposite by multi-step friction-stir processing. Mater Sci Eng A 698:313–325
16.
Zurück zum Zitat Khodabakhshi F, Gerlich AP, Simchi A, Kokabi AH (2015) Cryogenic friction-stir processing of ultrafine-grained Al–Mg–TiO2 nanocomposites. Mater Sci Eng A 620:471–482 Khodabakhshi F, Gerlich AP, Simchi A, Kokabi AH (2015) Cryogenic friction-stir processing of ultrafine-grained Al–Mg–TiO2 nanocomposites. Mater Sci Eng A 620:471–482
17.
Zurück zum Zitat Zhang W, Ding H, Cai M, Yang W, Li J (2018) Ultra-grain refinement and enhanced low-temperature superplasticity in a friction stir-processed Ti–6Al–4V alloy. Mater Sci Eng A 727:90–96 Zhang W, Ding H, Cai M, Yang W, Li J (2018) Ultra-grain refinement and enhanced low-temperature superplasticity in a friction stir-processed Ti–6Al–4V alloy. Mater Sci Eng A 727:90–96
18.
Zurück zum Zitat Khodabakhshi F, Arab SM, Švec P, Gerlich AP (2017) Fabrication of a new Al–Mg/graphene nanocomposite by multi-pass friction-stir processing: dispersion, microstructure, stability, and strengthening. Mater Charact 132(Supplement C):92–107 Khodabakhshi F, Arab SM, Švec P, Gerlich AP (2017) Fabrication of a new Al–Mg/graphene nanocomposite by multi-pass friction-stir processing: dispersion, microstructure, stability, and strengthening. Mater Charact 132(Supplement C):92–107
19.
Zurück zum Zitat Khodabakhshi F, Gerlich A, Švec P (2017) Reactive friction-stir processing of an Al–Mg alloy with introducing multi-walled carbon nano-tubes (MW-CNTs): microstructural characteristics and mechanical properties. Mater Charact 131:359–373 Khodabakhshi F, Gerlich A, Švec P (2017) Reactive friction-stir processing of an Al–Mg alloy with introducing multi-walled carbon nano-tubes (MW-CNTs): microstructural characteristics and mechanical properties. Mater Charact 131:359–373
20.
Zurück zum Zitat Khodabakhshi F, Gerlich AP, Simchi A, Kokabi AH (2015) Hot deformation behavior of an aluminum-matrix hybrid nanocomposite fabricated by friction stir processing. Mater Sci Eng A 626:458–466 Khodabakhshi F, Gerlich AP, Simchi A, Kokabi AH (2015) Hot deformation behavior of an aluminum-matrix hybrid nanocomposite fabricated by friction stir processing. Mater Sci Eng A 626:458–466
21.
Zurück zum Zitat Khodabakhshi F, Simchi A, Kokabi A, Nosko M, Švec P (2014) Strain rate sensitivity, work hardening, and fracture behavior of an Al–Mg TiO2 nanocomposite prepared by friction stir processing. Metall Mater Trans A 45(9):4073–4088 Khodabakhshi F, Simchi A, Kokabi A, Nosko M, Švec P (2014) Strain rate sensitivity, work hardening, and fracture behavior of an Al–Mg TiO2 nanocomposite prepared by friction stir processing. Metall Mater Trans A 45(9):4073–4088
22.
Zurück zum Zitat Khodabakhshi F, Simchi A, Kokabi AH, Nosko M, Simanĉik F, Švec P (2014) Microstructure and texture development during friction stir processing of Al–Mg alloy sheets with TiO2 nanoparticles. Mater Sci Eng A 605:108–118 Khodabakhshi F, Simchi A, Kokabi AH, Nosko M, Simanĉik F, Švec P (2014) Microstructure and texture development during friction stir processing of Al–Mg alloy sheets with TiO2 nanoparticles. Mater Sci Eng A 605:108–118
23.
Zurück zum Zitat Khodabakhshi F, Simchi A, Kokabi AH, Sadeghahmadi M, Gerlich AP (2015) Reactive friction stir processing of AA 5052–TiO2 nanocomposite: process–microstructure–mechanical characteristics. Mater Sci Technol 31(4):426–435 Khodabakhshi F, Simchi A, Kokabi AH, Sadeghahmadi M, Gerlich AP (2015) Reactive friction stir processing of AA 5052–TiO2 nanocomposite: process–microstructure–mechanical characteristics. Mater Sci Technol 31(4):426–435
24.
Zurück zum Zitat Khodabakhshi F, Simchi A, Kokabi AH, Švec P, Simančík F, Gerlich AP (2015) Effects of nanometric inclusions on the microstructural characteristics and strengthening of a friction-stir processed aluminium–magnesium alloy. Mater Sci Eng A 642:215–229 Khodabakhshi F, Simchi A, Kokabi AH, Švec P, Simančík F, Gerlich AP (2015) Effects of nanometric inclusions on the microstructural characteristics and strengthening of a friction-stir processed aluminium–magnesium alloy. Mater Sci Eng A 642:215–229
25.
Zurück zum Zitat Ma ZY (2008) Friction stir processing technology: a review. Metall Mater Trans A 39(3):642–658 Ma ZY (2008) Friction stir processing technology: a review. Metall Mater Trans A 39(3):642–658
26.
Zurück zum Zitat Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding—process, weldment structure and properties. Prog Mater Sci 53(6):980–1023 Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding—process, weldment structure and properties. Prog Mater Sci 53(6):980–1023
27.
Zurück zum Zitat Zhang W, Ding H, Cai M, Yang W, Li J (2019) Low-temperature superplastic deformation mechanism in Ti–6Al–4V alloy processed by friction stir processing. Mater Sci Eng A 764:138261 Zhang W, Ding H, Cai M, Yang W, Li J (2019) Low-temperature superplastic deformation mechanism in Ti–6Al–4V alloy processed by friction stir processing. Mater Sci Eng A 764:138261
28.
Zurück zum Zitat Zhang W, Liu H, Ding H, Fujii H (2019) Grain refinement and superplastic flow in friction stir processed Ti–15V–3Cr–3Sn–3Al alloy. J Alloys Compd 803:901–911 Zhang W, Liu H, Ding H, Fujii H (2019) Grain refinement and superplastic flow in friction stir processed Ti–15V–3Cr–3Sn–3Al alloy. J Alloys Compd 803:901–911
29.
Zurück zum Zitat McNelley TR, Swaminathan S, Su JQ (2008) Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr Mater 58(5):349–354 McNelley TR, Swaminathan S, Su JQ (2008) Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr Mater 58(5):349–354
30.
Zurück zum Zitat Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ (2014) Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci 60:130–207 Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ (2014) Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci 60:130–207
31.
Zurück zum Zitat Khodabakhshi F, Nosko M, Gerlich AP (2018) Influence of CNTs decomposition during reactive friction-stir processing of an Al–Mg alloy on the correlation between microstructural characteristics and microtextural components. J Microsc 271(2):188–206 Khodabakhshi F, Nosko M, Gerlich AP (2018) Influence of CNTs decomposition during reactive friction-stir processing of an Al–Mg alloy on the correlation between microstructural characteristics and microtextural components. J Microsc 271(2):188–206
32.
Zurück zum Zitat Khodabakhshi F, Nosko M, Gerlich AP (2018) Dynamic restoration and crystallographic texture of a friction-stir processed Al–Mg–SiC surface nanocomposite. Mater Sci Technol 34(14):1773–1791 Khodabakhshi F, Nosko M, Gerlich AP (2018) Dynamic restoration and crystallographic texture of a friction-stir processed Al–Mg–SiC surface nanocomposite. Mater Sci Technol 34(14):1773–1791
33.
Zurück zum Zitat Khodabakhshi F, Nosko M, Gerlich AP (2018) Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al–Mg alloy during friction-stir processing. Surf Coat Technol 335:288–305 Khodabakhshi F, Nosko M, Gerlich AP (2018) Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al–Mg alloy during friction-stir processing. Surf Coat Technol 335:288–305
34.
Zurück zum Zitat Khodabakhshi F, Rahmati R, Nosko M, Orovčík L, Nagy Š, Gerlich AP (2019) Orientation structural mapping and textural characterization of a CP-Ti/HA surface nanocomposite produced by friction-stir processing. Surf Coat Technol 374:460–475 Khodabakhshi F, Rahmati R, Nosko M, Orovčík L, Nagy Š, Gerlich AP (2019) Orientation structural mapping and textural characterization of a CP-Ti/HA surface nanocomposite produced by friction-stir processing. Surf Coat Technol 374:460–475
35.
Zurück zum Zitat Khodabakhshi F, Simchi A, Kokabi AH, Nosko M, Simanĉik F, Švec P (2014) Microstructure and texture development during friction stir processing of Al–Mg alloy sheets with TiO2 nanoparticles. Mater Sci Eng A 605:108–118 Khodabakhshi F, Simchi A, Kokabi AH, Nosko M, Simanĉik F, Švec P (2014) Microstructure and texture development during friction stir processing of Al–Mg alloy sheets with TiO2 nanoparticles. Mater Sci Eng A 605:108–118
36.
Zurück zum Zitat Raabe D (1998) Computational materials science: the simulation of materials, microstructures and properties. Wiley, Hoboken Raabe D (1998) Computational materials science: the simulation of materials, microstructures and properties. Wiley, Hoboken
37.
Zurück zum Zitat Aghajani Derazkola H, Khodabakhshi F (2019) Intermetallic compounds (IMCs) formation during dissimilar friction-stir welding of AA5005 aluminum alloy to St-52 steel: numerical modeling and experimental study. Int J Adv Manuf Technol 100(9):2401–2422 Aghajani Derazkola H, Khodabakhshi F (2019) Intermetallic compounds (IMCs) formation during dissimilar friction-stir welding of AA5005 aluminum alloy to St-52 steel: numerical modeling and experimental study. Int J Adv Manuf Technol 100(9):2401–2422
38.
Zurück zum Zitat Derazkola HA, Khodabakhshi F, Simchi A (2018) Friction-stir lap-joining of aluminium–magnesium/poly-methyl-methacrylate hybrid structures: thermo-mechanical modelling and experimental feasibility study. Sci Technol Weld Join 23(1):35–49 Derazkola HA, Khodabakhshi F, Simchi A (2018) Friction-stir lap-joining of aluminium–magnesium/poly-methyl-methacrylate hybrid structures: thermo-mechanical modelling and experimental feasibility study. Sci Technol Weld Join 23(1):35–49
39.
Zurück zum Zitat Ansari MA, Samanta A, Behnagh RA, Ding H (2019) An efficient coupled Eulerian–Lagrangian finite element model for friction stir processing. Int J Adv Manuf Technol 101(5–8):1495–1508 Ansari MA, Samanta A, Behnagh RA, Ding H (2019) An efficient coupled Eulerian–Lagrangian finite element model for friction stir processing. Int J Adv Manuf Technol 101(5–8):1495–1508
40.
Zurück zum Zitat Lipscomb CA, Fortier A, Kong F, Das S, Kumar N, Mishra RS (2016) Evaluation of plastic zone development in WE43 magnesium alloy upon friction stir processing using finite element modeling. Mater Sci Eng A 673:178–184 Lipscomb CA, Fortier A, Kong F, Das S, Kumar N, Mishra RS (2016) Evaluation of plastic zone development in WE43 magnesium alloy upon friction stir processing using finite element modeling. Mater Sci Eng A 673:178–184
41.
Zurück zum Zitat Goins PE, Holm EA (2016) The material point Monte Carlo model: a discrete, off-lattice method for microstructural evolution simulations. Comput Mater Sci 124:411–419 Goins PE, Holm EA (2016) The material point Monte Carlo model: a discrete, off-lattice method for microstructural evolution simulations. Comput Mater Sci 124:411–419
42.
Zurück zum Zitat Homer ER, Tikare V, Holm EA (2013) Hybrid Potts-phase field model for coupled microstructural–compositional evolution. Comput Mater Sci 69:414–423 Homer ER, Tikare V, Holm EA (2013) Hybrid Potts-phase field model for coupled microstructural–compositional evolution. Comput Mater Sci 69:414–423
43.
Zurück zum Zitat Luan Q, Lee J, Zheng JH, Hopper C, Jiang J (2020) Combining microstructural characterization with crystal plasticity and phase-field modelling for the study of static recrystallization in pure aluminium. Comput Mater Sci 173:109419 Luan Q, Lee J, Zheng JH, Hopper C, Jiang J (2020) Combining microstructural characterization with crystal plasticity and phase-field modelling for the study of static recrystallization in pure aluminium. Comput Mater Sci 173:109419
44.
Zurück zum Zitat Yang CW, Tsou NT (2017) Microstructural analysis and molecular dynamics modeling of shape memory alloys. Comput Mater Sci 131:293–300 Yang CW, Tsou NT (2017) Microstructural analysis and molecular dynamics modeling of shape memory alloys. Comput Mater Sci 131:293–300
45.
Zurück zum Zitat Fraser KA, St-Georges L, Kiss LI (2014) Optimization of friction stir welding tool advance speed via monte-carlo simulation of the friction stir welding process. Materials 7(5):3435–3452 Fraser KA, St-Georges L, Kiss LI (2014) Optimization of friction stir welding tool advance speed via monte-carlo simulation of the friction stir welding process. Materials 7(5):3435–3452
46.
Zurück zum Zitat Grujicic M, Ramaswami S, Snipes JS, Avuthu V, Galgalikar R, Zhang Z (2015) Prediction of the grain-microstructure evolution within a friction stir welding (FSW) joint via the use of the monte carlo simulation method. J Mater Eng Perform 24(9):3471–3486 Grujicic M, Ramaswami S, Snipes JS, Avuthu V, Galgalikar R, Zhang Z (2015) Prediction of the grain-microstructure evolution within a friction stir welding (FSW) joint via the use of the monte carlo simulation method. J Mater Eng Perform 24(9):3471–3486
47.
Zurück zum Zitat Zhang Z, Hu CP (2018) 3D Monte Carlo simulation of grain growth in friction stir welding. J Mech Sci Technol 32(3):1287–1296 Zhang Z, Hu CP (2018) 3D Monte Carlo simulation of grain growth in friction stir welding. J Mech Sci Technol 32(3):1287–1296
49.
Zurück zum Zitat Abdi Behnagh R, Samanta A, Agha Mohammad Pour M, Esmailzadeh P, Ding H (2019) Predicting microstructure evolution for friction stir extrusion using a cellular automaton method. Model Simul Mater Sci Eng 27(3):035006 Abdi Behnagh R, Samanta A, Agha Mohammad Pour M, Esmailzadeh P, Ding H (2019) Predicting microstructure evolution for friction stir extrusion using a cellular automaton method. Model Simul Mater Sci Eng 27(3):035006
50.
Zurück zum Zitat Akbari M, Asadi P, Givi MB, Zolghadr P (2016) A cellular automaton model for microstructural simulation of friction stir welded AZ91 magnesium alloy. Model Simul Mater Sci Eng 24(3):035012 Akbari M, Asadi P, Givi MB, Zolghadr P (2016) A cellular automaton model for microstructural simulation of friction stir welded AZ91 magnesium alloy. Model Simul Mater Sci Eng 24(3):035012
51.
Zurück zum Zitat Asadi P, Givi MKB, Akbari M (2016) Simulation of dynamic recrystallization process during friction stir welding of AZ91 magnesium alloy. Int J Adv Manuf Technol 83(1–4):301–311 Asadi P, Givi MKB, Akbari M (2016) Simulation of dynamic recrystallization process during friction stir welding of AZ91 magnesium alloy. Int J Adv Manuf Technol 83(1–4):301–311
52.
Zurück zum Zitat Saluja RS, Ganesh Narayanan R, Das S (2012) Cellular automata finite element (CAFE) model to predict the forming of friction stir welded blanks. Comput Mater Sci 58:87–100 Saluja RS, Ganesh Narayanan R, Das S (2012) Cellular automata finite element (CAFE) model to predict the forming of friction stir welded blanks. Comput Mater Sci 58:87–100
53.
Zurück zum Zitat Song KJ, Dong ZB, Fang K, Zhan XH, Wei YH (2014) Cellular automaton modelling of dynamic recrystallisation microstructure evolution during friction stir welding of titanium alloy. Mater Sci Technol 30(6):700–711 Song KJ, Dong ZB, Fang K, Zhan XH, Wei YH (2014) Cellular automaton modelling of dynamic recrystallisation microstructure evolution during friction stir welding of titanium alloy. Mater Sci Technol 30(6):700–711
54.
Zurück zum Zitat Wu Q, Zhang Z (2017) Precipitation-induced grain growth simulation of friction-stir-welded AA6082-T6. J Mater Eng Perform 26(5):2179–2189 Wu Q, Zhang Z (2017) Precipitation-induced grain growth simulation of friction-stir-welded AA6082-T6. J Mater Eng Perform 26(5):2179–2189
55.
Zurück zum Zitat Zhang Z, Tan ZJ, Li JY, Zu YF, Liu WW, Sha JJ (2019) Experimental and numerical studies of re-stirring and re-heating effects on mechanical properties in friction stir additive manufacturing. Int J Adv Manuf Technol 104(1–4):767–784 Zhang Z, Tan ZJ, Li JY, Zu YF, Liu WW, Sha JJ (2019) Experimental and numerical studies of re-stirring and re-heating effects on mechanical properties in friction stir additive manufacturing. Int J Adv Manuf Technol 104(1–4):767–784
56.
Zurück zum Zitat Yu Z, Zhang W, Choo H, Feng Z (2012) Transient heat and material flow modeling of friction stir processing of magnesium alloy using threaded tool. Metall Mater Trans A 43(2):724–737 Yu Z, Zhang W, Choo H, Feng Z (2012) Transient heat and material flow modeling of friction stir processing of magnesium alloy using threaded tool. Metall Mater Trans A 43(2):724–737
57.
Zurück zum Zitat Nandan R, Roy GG, Lienert TJ, Debroy T (2007) Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater 55(3):883–895 Nandan R, Roy GG, Lienert TJ, Debroy T (2007) Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater 55(3):883–895
58.
Zurück zum Zitat Yang Z, Sista S, Elmer JW, DebRoy T (2000) Three dimensional Monte Carlo simulation of grain growth during GTA welding of titanium. Acta Mater 48(20):4813–4825 Yang Z, Sista S, Elmer JW, DebRoy T (2000) Three dimensional Monte Carlo simulation of grain growth during GTA welding of titanium. Acta Mater 48(20):4813–4825
59.
Zurück zum Zitat Huang CM, Joanne CL, Patnaik BSV, Jayaganthan R (2006) Monte Carlo simulation of grain growth in polycrystalline materials. Appl Surf Sci 252(11):3997–4002 Huang CM, Joanne CL, Patnaik BSV, Jayaganthan R (2006) Monte Carlo simulation of grain growth in polycrystalline materials. Appl Surf Sci 252(11):3997–4002
60.
Zurück zum Zitat Zhang Z, Wu Q, Zhang HW (2016) Prediction of fatigue life of welding tool in friction stir welding of AA6061-T6. Int J Adv Manuf Technol 86(9–12):3407–3415 Zhang Z, Wu Q, Zhang HW (2016) Prediction of fatigue life of welding tool in friction stir welding of AA6061-T6. Int J Adv Manuf Technol 86(9–12):3407–3415
61.
Zurück zum Zitat Gao J, Thompson RG (1996) Real time-temperature models for Monte Carlo simulations of normal grain growth. Acta Mater 44(11):4565–4570 Gao J, Thompson RG (1996) Real time-temperature models for Monte Carlo simulations of normal grain growth. Acta Mater 44(11):4565–4570
62.
Zurück zum Zitat Driver GW, Johnson KE (2014) Interpretation of fusion and vaporisation entropies for various classes of substances, with a focus on salts. J Chem Thermodyn 70:207–213 Driver GW, Johnson KE (2014) Interpretation of fusion and vaporisation entropies for various classes of substances, with a focus on salts. J Chem Thermodyn 70:207–213
63.
Zurück zum Zitat Zhang Z, Zhang HW (2014) Solid mechanics-based Eulerian model of friction stir welding. Int J Adv Manuf Technol 72(9):1647–1653 Zhang Z, Zhang HW (2014) Solid mechanics-based Eulerian model of friction stir welding. Int J Adv Manuf Technol 72(9):1647–1653
64.
Zurück zum Zitat Khodabakhshi F, Simchi A, Kokabi AH, Gerlich AP, Nosko M (2015) Effects of stored strain energy on restoration mechanisms and texture components in an aluminum–magnesium alloy prepared by friction stir processing. Mater Sci Eng A 642:204–214 Khodabakhshi F, Simchi A, Kokabi AH, Gerlich AP, Nosko M (2015) Effects of stored strain energy on restoration mechanisms and texture components in an aluminum–magnesium alloy prepared by friction stir processing. Mater Sci Eng A 642:204–214
65.
Zurück zum Zitat Etter AL, Baudin T, Fredj N, Penelle R (2007) Recrystallization mechanisms in 5251 H14 and 5251 O aluminum friction stir welds. Mater Sci Eng A 445–446:94–99 Etter AL, Baudin T, Fredj N, Penelle R (2007) Recrystallization mechanisms in 5251 H14 and 5251 O aluminum friction stir welds. Mater Sci Eng A 445–446:94–99
66.
Zurück zum Zitat Jata KV, Semiatin SL (2000) Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scr Mater 43(8):743–749 Jata KV, Semiatin SL (2000) Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scr Mater 43(8):743–749
67.
Zurück zum Zitat Fonda RW, Knipling KE (2011) Texture development in friction stir welds. Sci Technol Weld Join 16(4):288–294 Fonda RW, Knipling KE (2011) Texture development in friction stir welds. Sci Technol Weld Join 16(4):288–294
68.
Zurück zum Zitat Yoon S, Ueji R, Fujii H (2015) Effect of rotation rate on microstructure and texture evolution during friction stir welding of Ti–6Al–4V plates. Mater Charact 106:352–358 Yoon S, Ueji R, Fujii H (2015) Effect of rotation rate on microstructure and texture evolution during friction stir welding of Ti–6Al–4V plates. Mater Charact 106:352–358
69.
Zurück zum Zitat Reynolds AP, Hood E, Tang W (2005) Texture in friction stir welds of Timetal 21S. Scr Mater 52(6):491–494 Reynolds AP, Hood E, Tang W (2005) Texture in friction stir welds of Timetal 21S. Scr Mater 52(6):491–494
Metadaten
Titel
Monte Carlo simulation of grain refinement during friction stir processing
verfasst von
F. Khodabakhshi
H. Aghajani Derazkola
A. P. Gerlich
Publikationsdatum
22.06.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 27/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04963-2

Weitere Artikel der Ausgabe 27/2020

Journal of Materials Science 27/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.