Skip to main content
Erschienen in: Water Resources Management 11/2020

04.08.2020

Monthly Streamflow Forecasting Using ELM-IPSO Based on Phase Space Reconstruction

verfasst von: Yan Jiang, Xin Bao, Shaonan Hao, Hongtao Zhao, Xuyong Li, Xianing Wu

Erschienen in: Water Resources Management | Ausgabe 11/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We have developed a hybrid model that integrates chaos theory and an extreme learning machine with optimal parameters selected using an improved particle swarm optimization (ELM-IPSO) for monthly runoff analysis and prediction. Monthly streamflow data covering a period of 55 years from Daiying hydrological station in the Chaohe River basin in northern China were used for the study. The Lyapunov exponent, the correlation dimension method, and the nonlinear prediction method were used to characterize the streamflow data. With the time series of the reconstructed phase space matrix as input variables, an improved particle swarm optimization was used to improve the performance of the extreme learning machine. Finally, the optimal chaotic ensemble learning model for monthly streamflow prediction was obtained. The accuracy of the predictions of the streamflow series (linear correlation coefficient of about 0.89 and efficiency coefficient of about 0.78) indicate the validity of our approach for predicting streamflow dynamics. The developed method had a higher prediction accuracy compared with an auto-regression method, an artificial neural network, an extreme learning machine with genetic algorithm and with PSO algorithm, suggesting that ELM-IPSO is an efficient method for monthly streamflow prediction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Benettin G, Froeschle C, Scheidecker JP (1979) Kolmogorov entropy of a dynamical system with an increasing number of degrees of freedom. Phys Rev A 19:2454–2460CrossRef Benettin G, Froeschle C, Scheidecker JP (1979) Kolmogorov entropy of a dynamical system with an increasing number of degrees of freedom. Phys Rev A 19:2454–2460CrossRef
Zurück zum Zitat Bordignon S, Lisi F (2000) Nonlinear analysis and prediction of river flow time series. Environmetrics 11:463–477CrossRef Bordignon S, Lisi F (2000) Nonlinear analysis and prediction of river flow time series. Environmetrics 11:463–477CrossRef
Zurück zum Zitat Bradford PW, Mark SS, Thor HM (1991) Searching for chaotic dynamics in snowmelt runoff. Water Resour Res 27(6):1005–1010CrossRef Bradford PW, Mark SS, Thor HM (1991) Searching for chaotic dynamics in snowmelt runoff. Water Resour Res 27(6):1005–1010CrossRef
Zurück zum Zitat Dhanya CT, Kumar DN (2010) Nonlinear ensemble prediction of chaotic daily rainfall. Adv Water Resour 33:327–347CrossRef Dhanya CT, Kumar DN (2010) Nonlinear ensemble prediction of chaotic daily rainfall. Adv Water Resour 33:327–347CrossRef
Zurück zum Zitat Duan QY, Sorooshian S, Gupta VK (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031CrossRef Duan QY, Sorooshian S, Gupta VK (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031CrossRef
Zurück zum Zitat Farmer DJ, Sidorowich JJ (1987) Predicting chaotic time series. Phys Rev Lett 59:845–848CrossRef Farmer DJ, Sidorowich JJ (1987) Predicting chaotic time series. Phys Rev Lett 59:845–848CrossRef
Zurück zum Zitat Ghorbani MA, Khatibi R, Mehr AD (2018) Chaos-based multigene genetic programming: a new hybrid strategy for river flow forecasting. J Hydrol 562:455–467CrossRef Ghorbani MA, Khatibi R, Mehr AD (2018) Chaos-based multigene genetic programming: a new hybrid strategy for river flow forecasting. J Hydrol 562:455–467CrossRef
Zurück zum Zitat Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50(5):346–349CrossRef Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50(5):346–349CrossRef
Zurück zum Zitat Han M, Zhang RQ, Xu ML (2017) Multivariate chaotic time series prediction based on ELM–PLSR and hybrid variable selection algorithm. Neural Process Lett 46(2):705–717CrossRef Han M, Zhang RQ, Xu ML (2017) Multivariate chaotic time series prediction based on ELM–PLSR and hybrid variable selection algorithm. Neural Process Lett 46(2):705–717CrossRef
Zurück zum Zitat Hong M, Wang D, Wang Y, Zeng X, Ge S, Yan H, Singh VP (2016) Mid-and Longterm runoff predictions by an improved phase-space reconstruction model. Environ Res 148:560–573CrossRef Hong M, Wang D, Wang Y, Zeng X, Ge S, Yan H, Singh VP (2016) Mid-and Longterm runoff predictions by an improved phase-space reconstruction model. Environ Res 148:560–573CrossRef
Zurück zum Zitat Hu Z, Zhang C, Luo G, Teng Z, Jia C (2013) Characterizing Crossscale chaotic behaviors of the runoff time series in an Inland River of Central Asia. Quat Int 311(9):132–139CrossRef Hu Z, Zhang C, Luo G, Teng Z, Jia C (2013) Characterizing Crossscale chaotic behaviors of the runoff time series in an Inland River of Central Asia. Quat Int 311(9):132–139CrossRef
Zurück zum Zitat Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501CrossRef Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501CrossRef
Zurück zum Zitat Huang SZ, Chang JX, Huang Q, Chen YT (2014) Monthly streamflow prediction using modified EMD-based support vector machine. J Hydrol 511:764–775CrossRef Huang SZ, Chang JX, Huang Q, Chen YT (2014) Monthly streamflow prediction using modified EMD-based support vector machine. J Hydrol 511:764–775CrossRef
Zurück zum Zitat Huang G, Huang GB, Song SJ, You KY (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48CrossRef Huang G, Huang GB, Song SJ, You KY (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48CrossRef
Zurück zum Zitat Islam MN, Sivakumar B (2002) Characterization and prediction of runoff dynamics: a nonlinear dynamical view. Adv Water Resour 25:179–190CrossRef Islam MN, Sivakumar B (2002) Characterization and prediction of runoff dynamics: a nonlinear dynamical view. Adv Water Resour 25:179–190CrossRef
Zurück zum Zitat Jiang Y, Liu CM, Huang CC, Wu XN (2010) Improved particle swarm algorithm for hydrological parameter optimization. Appl Math Comput 217:3207–3215 Jiang Y, Liu CM, Huang CC, Wu XN (2010) Improved particle swarm algorithm for hydrological parameter optimization. Appl Math Comput 217:3207–3215
Zurück zum Zitat Jiang Y, Li XY, Huang CC (2013) Automatic calibration a hydrologicalmodel using a master–slave swarms shuffling evolution algorithm based on self-adaptive particle swarm optimization. Expert Syst Appl 40(2):752–757CrossRef Jiang Y, Li XY, Huang CC (2013) Automatic calibration a hydrologicalmodel using a master–slave swarms shuffling evolution algorithm based on self-adaptive particle swarm optimization. Expert Syst Appl 40(2):752–757CrossRef
Zurück zum Zitat Jiang Y, Liu CM, Li XY, Liu LF, Wang HR (2015) Rainfall-runoff modeling, parameter estimation and sensitivity analysis in a semiarid catchment. Environ Model Softw 67:72–88CrossRef Jiang Y, Liu CM, Li XY, Liu LF, Wang HR (2015) Rainfall-runoff modeling, parameter estimation and sensitivity analysis in a semiarid catchment. Environ Model Softw 67:72–88CrossRef
Zurück zum Zitat Kedra M (2013) Deterministic chaotic dynamics of Raba River flow (polish Carpathian Mountains). J Hydrol 509:474–503CrossRef Kedra M (2013) Deterministic chaotic dynamics of Raba River flow (polish Carpathian Mountains). J Hydrol 509:474–503CrossRef
Zurück zum Zitat Kennel MB, Brown R, Abarbanel HD (1992) Determining embedding dimension for phase space reconstruction using a geometric method. Phys Rev A 45:3403–3411CrossRef Kennel MB, Brown R, Abarbanel HD (1992) Determining embedding dimension for phase space reconstruction using a geometric method. Phys Rev A 45:3403–3411CrossRef
Zurück zum Zitat Khan S, Ganguly AR, Saigal S (2005) Detection and predictive modeling of chaos in finite hydrological time series. Nonlinear Process Geophys 12:41–53CrossRef Khan S, Ganguly AR, Saigal S (2005) Detection and predictive modeling of chaos in finite hydrological time series. Nonlinear Process Geophys 12:41–53CrossRef
Zurück zum Zitat Labat D, Sivakumar B, Mangin A (2016) Evidence for deterministic chaos in long-term high-resolution karstic streamflow time series. Stoch Env Res Risk A 30:2189–2196CrossRef Labat D, Sivakumar B, Mangin A (2016) Evidence for deterministic chaos in long-term high-resolution karstic streamflow time series. Stoch Env Res Risk A 30:2189–2196CrossRef
Zurück zum Zitat Mohammad ZK (2016) Investigating vhaos and nonlinear forecasting in short term and mid-term river discharge. Water Resour Manag 30(5):1851–1865CrossRef Mohammad ZK (2016) Investigating vhaos and nonlinear forecasting in short term and mid-term river discharge. Water Resour Manag 30(5):1851–1865CrossRef
Zurück zum Zitat Ouyang Q, Lu W, Xin X, Zhang Y, Cheng W, Yu T (2016) Monthly rainfall forecasting using EEMD-SVR based on phase-space reconstruction. Water Resour Manag 30(7):2311–2325CrossRef Ouyang Q, Lu W, Xin X, Zhang Y, Cheng W, Yu T (2016) Monthly rainfall forecasting using EEMD-SVR based on phase-space reconstruction. Water Resour Manag 30(7):2311–2325CrossRef
Zurück zum Zitat Paluš M, Pecen L, Pivka D (1995) Estimating predictability: redundancy and surrogate data method. Neural Network World 4:537–550 Paluš M, Pecen L, Pivka D (1995) Estimating predictability: redundancy and surrogate data method. Neural Network World 4:537–550
Zurück zum Zitat Porporato A, Ridolfi L (1997) Nonlinear analysis of river flow time sequences. Water Resour Res 33(6):1353–1367CrossRef Porporato A, Ridolfi L (1997) Nonlinear analysis of river flow time sequences. Water Resour Res 33(6):1353–1367CrossRef
Zurück zum Zitat Rosenstein MT, Collins JJ, De Luca CJ (1993) A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65:117–134CrossRef Rosenstein MT, Collins JJ, De Luca CJ (1993) A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65:117–134CrossRef
Zurück zum Zitat Sano M, Sawada Y (1985) Measurement of the Lyapunov spectrum from a chaotic time series. Phys Rev Lett 55(10):1082–1085CrossRef Sano M, Sawada Y (1985) Measurement of the Lyapunov spectrum from a chaotic time series. Phys Rev Lett 55(10):1082–1085CrossRef
Zurück zum Zitat Schreiber T, Schmitz A (1996) Improved surrogate data for nonlinearity tests. Phys Rev Lett 77:635–638CrossRef Schreiber T, Schmitz A (1996) Improved surrogate data for nonlinearity tests. Phys Rev Lett 77:635–638CrossRef
Zurück zum Zitat Sivakumar B (2000) Chaos theory in hydrology: important issues and interpretations. J Hydrol 227:1–20CrossRef Sivakumar B (2000) Chaos theory in hydrology: important issues and interpretations. J Hydrol 227:1–20CrossRef
Zurück zum Zitat Sivakumar B (2004) Chaos theory in geophysics: past, present and future. Chaos, Solitons Fractals 19:441–462CrossRef Sivakumar B (2004) Chaos theory in geophysics: past, present and future. Chaos, Solitons Fractals 19:441–462CrossRef
Zurück zum Zitat Sivakumar B, Berndtsson R, Olsson J, Jinno K (2001) Evidence of chaos in the rainfall-runoff process. Hydrol Sci 46(1):131–145CrossRef Sivakumar B, Berndtsson R, Olsson J, Jinno K (2001) Evidence of chaos in the rainfall-runoff process. Hydrol Sci 46(1):131–145CrossRef
Zurück zum Zitat Sugihara G, May R (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344(6268):734–741CrossRef Sugihara G, May R (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344(6268):734–741CrossRef
Zurück zum Zitat Takens F (1981) Detecting strange attractors in turbulence. Lecture Notes in Mathematics 898:366–381CrossRef Takens F (1981) Detecting strange attractors in turbulence. Lecture Notes in Mathematics 898:366–381CrossRef
Zurück zum Zitat Taormina R, Chau KK (2015) Data-driven input variable selection for rainfall–runoff modeling using binary-coded particle swarm optimization and extreme learning machines. J Hydrol 529:1617–1632CrossRef Taormina R, Chau KK (2015) Data-driven input variable selection for rainfall–runoff modeling using binary-coded particle swarm optimization and extreme learning machines. J Hydrol 529:1617–1632CrossRef
Zurück zum Zitat Vicente-Guillén J, Ayuga-Telléz E, Otero D, Chávez JL, Ayuga F, García AI (2012) Performance of a monthly Streamflow prediction model for Ungauged watersheds in Spain. Water Resour Manag 26:3767–3784CrossRef Vicente-Guillén J, Ayuga-Telléz E, Otero D, Chávez JL, Ayuga F, García AI (2012) Performance of a monthly Streamflow prediction model for Ungauged watersheds in Spain. Water Resour Manag 26:3767–3784CrossRef
Zurück zum Zitat Wang QJ (1997) Using genetic algorithms to optimize model parameters. Environ Model Softw 12:27–34CrossRef Wang QJ (1997) Using genetic algorithms to optimize model parameters. Environ Model Softw 12:27–34CrossRef
Zurück zum Zitat Wang Y, Zhou JZ, Zhou C, Wang YQ, Qin H, Lu YL (2012) An improved selfadaptive PSO technique for short-term hydrothermal scheduling. Expert Syst Appl 39:2288–2295CrossRef Wang Y, Zhou JZ, Zhou C, Wang YQ, Qin H, Lu YL (2012) An improved selfadaptive PSO technique for short-term hydrothermal scheduling. Expert Syst Appl 39:2288–2295CrossRef
Zurück zum Zitat Wolf A, Swift J, Swinney HL, Vastano A (1985) Determining Lyapunov exponents from a time serie. Physica D: Nonlinear Phenomena 16(3):285–317CrossRef Wolf A, Swift J, Swinney HL, Vastano A (1985) Determining Lyapunov exponents from a time serie. Physica D: Nonlinear Phenomena 16(3):285–317CrossRef
Zurück zum Zitat Xu JH, Chen YN, Li WH, Ji MH, Dong S (2009) The complex nonlinear systems with fractal as well as chaotic dynamics of annual runoff processes in the three headwaters of the Tarim River. J Geogr Sci 19:25–35CrossRef Xu JH, Chen YN, Li WH, Ji MH, Dong S (2009) The complex nonlinear systems with fractal as well as chaotic dynamics of annual runoff processes in the three headwaters of the Tarim River. J Geogr Sci 19:25–35CrossRef
Metadaten
Titel
Monthly Streamflow Forecasting Using ELM-IPSO Based on Phase Space Reconstruction
verfasst von
Yan Jiang
Xin Bao
Shaonan Hao
Hongtao Zhao
Xuyong Li
Xianing Wu
Publikationsdatum
04.08.2020
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 11/2020
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-020-02631-3

Weitere Artikel der Ausgabe 11/2020

Water Resources Management 11/2020 Zur Ausgabe