Skip to main content
Erschienen in: Journal of Materials Science 26/2020

14.05.2020 | Energy materials

MoO3 nanoplates: a high-capacity and long-life anode material for sodium-ion batteries

verfasst von: Caihong Yang, Qiankun Xiang, Xuemei Li, Yanqi Xu, Xin Wang, Xiangli Xie, Cunjun Li, Hai Wang, Linjiang Wang

Erschienen in: Journal of Materials Science | Ausgabe 26/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

MoO3 has become a very promising energy storage material owing to its high theoretical capacity and layered structure. However, MoO3 suffers from low specific capacitance and fast degradation performance due to pulverization caused by volume change during discharge and charge process. Here, we report the MoO3 nanoplates (MoO3 NPs) from Mo-based metal–organic frameworks (Mo-MOFs) via a facile heating treatment. When used as an anode in sodium-ion batteries (SIBs), the material showed 154 mAh g−1 superior discharge capacity at 50 mA g−1 after 1200 cycles. Even at 500 mA g−1, it also showed 217 mAh g−1 high specific capacity after 500 cycles. This specific MoO3 material design strategy offers suitable conditions for relieving the volume expansion and provides multiple channels for Na+ transport and electron transfer in MoO3 during discharge and charge process. This work highlights the importance of MoO3 nanoplates in preventing the pulverization caused by volume expansion in SIBs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958CrossRef Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958CrossRef
3.
Zurück zum Zitat Li W, Hu S, Luo X, Li Z, Sun X, Li M, Liu F, Yu Y (2017) Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater 29:1–8 Li W, Hu S, Luo X, Li Z, Sun X, Li M, Liu F, Yu Y (2017) Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater 29:1–8
4.
Zurück zum Zitat Liu H, Jia M, Zhu Q, Cao B, Chen R, Wang Y, Wu F, Xu B (2016) 3D-0D graphene-Fe3O4 quantum dot hybrids as high-performance anode materials for sodium-ion batteries. ACS Appl Mater Interfaces 8:26878–26885CrossRef Liu H, Jia M, Zhu Q, Cao B, Chen R, Wang Y, Wu F, Xu B (2016) 3D-0D graphene-Fe3O4 quantum dot hybrids as high-performance anode materials for sodium-ion batteries. ACS Appl Mater Interfaces 8:26878–26885CrossRef
5.
Zurück zum Zitat Liu Y, Cheng Z, Sun H, Arandiyan H, Li J, Ahmad M (2015) Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode. J Power Sources 273:878–884CrossRef Liu Y, Cheng Z, Sun H, Arandiyan H, Li J, Ahmad M (2015) Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode. J Power Sources 273:878–884CrossRef
6.
Zurück zum Zitat Wang B, Wang G, Cheng X, Wang H (2016) Synthesis and electrochemical investigation of core-shell ultrathin NiO nanosheets grown on hollow carbon microspheres composite for high performance lithium and sodium ion batteries. Chem Eng J 306:1193–1202CrossRef Wang B, Wang G, Cheng X, Wang H (2016) Synthesis and electrochemical investigation of core-shell ultrathin NiO nanosheets grown on hollow carbon microspheres composite for high performance lithium and sodium ion batteries. Chem Eng J 306:1193–1202CrossRef
8.
Zurück zum Zitat Sreedhara MB, Santhosha AL, Bhattacharyya AJ, Rao CNR (2016) Composite of few-layer MoO3 nanosheets with graphene as a high performance anode for sodium-ion batteries. J Mater Chem A 4:9466–9471CrossRef Sreedhara MB, Santhosha AL, Bhattacharyya AJ, Rao CNR (2016) Composite of few-layer MoO3 nanosheets with graphene as a high performance anode for sodium-ion batteries. J Mater Chem A 4:9466–9471CrossRef
9.
Zurück zum Zitat Riley LA, Lee SH, Gedvilias L, Dillon AC (2010) Optimization of MoO3 nanoparticles as negative-electrode material in high-energy lithium ion batteries. J Power Sources 195:588–592CrossRef Riley LA, Lee SH, Gedvilias L, Dillon AC (2010) Optimization of MoO3 nanoparticles as negative-electrode material in high-energy lithium ion batteries. J Power Sources 195:588–592CrossRef
10.
Zurück zum Zitat Xia W, Xu F, Zhu C, Xin HL, Xu Q, Sun P, Sun L (2016) Probing microstructure and phase evolution of α-MoO3 nanobelts for sodium-ion batteries by in situ transmission electron microscopy. Nano Energy 27:447–456CrossRef Xia W, Xu F, Zhu C, Xin HL, Xu Q, Sun P, Sun L (2016) Probing microstructure and phase evolution of α-MoO3 nanobelts for sodium-ion batteries by in situ transmission electron microscopy. Nano Energy 27:447–456CrossRef
11.
Zurück zum Zitat Spahr ME, Novak P, Haas O, Nesper R (1995) Electrochemical insertion of lithium, sodium, and magnesium in molybdenum(Vi) oxide. J Power Sources 54:346–351CrossRef Spahr ME, Novak P, Haas O, Nesper R (1995) Electrochemical insertion of lithium, sodium, and magnesium in molybdenum(Vi) oxide. J Power Sources 54:346–351CrossRef
12.
Zurück zum Zitat McDowell MT, Xia SM, Zhu T (2016) The mechanics of large-volume-change transformations in high-capacity battery materials. Extreme Mech Lett 9:480–494CrossRef McDowell MT, Xia SM, Zhu T (2016) The mechanics of large-volume-change transformations in high-capacity battery materials. Extreme Mech Lett 9:480–494CrossRef
13.
Zurück zum Zitat Wu K, Zhan J, Xu G, Zhang C, Pan D, Wu M (2018) MoO3 nanosheet arrays as superior anode materials for Li- and Na-ion batteries. Nanoscale 10:16040–16049CrossRef Wu K, Zhan J, Xu G, Zhang C, Pan D, Wu M (2018) MoO3 nanosheet arrays as superior anode materials for Li- and Na-ion batteries. Nanoscale 10:16040–16049CrossRef
14.
Zurück zum Zitat Ding J, Abbas SA, Hanmandlu C, Lin L, Lai C, Wang P, Li L, Chu C, Chang C (2017) Facile synthesis of carbon/MoO3 nanocomposites as stable battery anodes. J Power Sources 348:270–280CrossRef Ding J, Abbas SA, Hanmandlu C, Lin L, Lai C, Wang P, Li L, Chu C, Chang C (2017) Facile synthesis of carbon/MoO3 nanocomposites as stable battery anodes. J Power Sources 348:270–280CrossRef
15.
Zurück zum Zitat Zhang X, Fu C, Li J, Yao C, Lu T, Pan L (2017) MoO3/reduced graphene oxide composites as anode material for sodium ion batteries. Ceram Int 43:3769–3773CrossRef Zhang X, Fu C, Li J, Yao C, Lu T, Pan L (2017) MoO3/reduced graphene oxide composites as anode material for sodium ion batteries. Ceram Int 43:3769–3773CrossRef
16.
Zurück zum Zitat Yang C, Lu H, Li C, Wang L, Wang H (2018) Spatially-confined electrochemical reactions of MoO3 nanobelts for reversible high capacity: critical roles of glucose. Chem Eng J 337:1–9CrossRef Yang C, Lu H, Li C, Wang L, Wang H (2018) Spatially-confined electrochemical reactions of MoO3 nanobelts for reversible high capacity: critical roles of glucose. Chem Eng J 337:1–9CrossRef
17.
Zurück zum Zitat Wang Z, Madhavi S, Lou XW (2012) Ultralong α-MoO3 nanobelts: synthesis and effect of binder choice on their lithium storage properties. J Phys Chem C 116:12508–12513CrossRef Wang Z, Madhavi S, Lou XW (2012) Ultralong α-MoO3 nanobelts: synthesis and effect of binder choice on their lithium storage properties. J Phys Chem C 116:12508–12513CrossRef
18.
Zurück zum Zitat Xia Q, Zhao H, Du Z, Zeng Z, Gao C, Zhang Z, Du X, Kulka A, Świerczek K (2015) Facile synthesis of MoO3/carbon nanobelts as high-performance anode material for lithium ion batteries. Electrochim Acta 180:947–956CrossRef Xia Q, Zhao H, Du Z, Zeng Z, Gao C, Zhang Z, Du X, Kulka A, Świerczek K (2015) Facile synthesis of MoO3/carbon nanobelts as high-performance anode material for lithium ion batteries. Electrochim Acta 180:947–956CrossRef
19.
Zurück zum Zitat Lee S-H, Kim Y-H, Deshpande R, Parilla PA, Whitney E, Gillaspie DT, Jones KM, Mahan AH, Zhang S, Dillon AC (2008) Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Adv Mater 20:3627–3632CrossRef Lee S-H, Kim Y-H, Deshpande R, Parilla PA, Whitney E, Gillaspie DT, Jones KM, Mahan AH, Zhang S, Dillon AC (2008) Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Adv Mater 20:3627–3632CrossRef
20.
Zurück zum Zitat Jiang Y, Sun M, Ni J, Li L (2019) Ultrastable sodium storage in MoO3 nanotube arrays enabled by surface phosphorylation. ACS Appl Mater Interfaces 11:37761–37767CrossRef Jiang Y, Sun M, Ni J, Li L (2019) Ultrastable sodium storage in MoO3 nanotube arrays enabled by surface phosphorylation. ACS Appl Mater Interfaces 11:37761–37767CrossRef
21.
Zurück zum Zitat Meduri P, Clark E, Kim JH, Dayalan E, Sumanasekera GU, Sunkara M (2012) MoO3−x nanowire arrays as stable and high-capacity anodes for lithium ion batteries. Nano Lett 12:1784–1788CrossRef Meduri P, Clark E, Kim JH, Dayalan E, Sumanasekera GU, Sunkara M (2012) MoO3−x nanowire arrays as stable and high-capacity anodes for lithium ion batteries. Nano Lett 12:1784–1788CrossRef
22.
Zurück zum Zitat Cao D, Dai Y, Xie S, Wang H, Niu C (2018) Pyrolytic synthesis of MoO3 nanoplates within foam-like carbon nanoflakes for enhanced lithium ion storage. J Colloid Interface Sci 514:686–693CrossRef Cao D, Dai Y, Xie S, Wang H, Niu C (2018) Pyrolytic synthesis of MoO3 nanoplates within foam-like carbon nanoflakes for enhanced lithium ion storage. J Colloid Interface Sci 514:686–693CrossRef
23.
Zurück zum Zitat Chen J, Lou X (2012) SnO2 and TiO2 nanosheets for lithium-ion batteries. Mater Today 15:246–254CrossRef Chen J, Lou X (2012) SnO2 and TiO2 nanosheets for lithium-ion batteries. Mater Today 15:246–254CrossRef
24.
Zurück zum Zitat Cao X, Zheng B, Shi W, Yang J, Fan Z, Luo Z, Rui X, Chen B, Yan Q, Zhang H (2015) Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv Mater 27:4695–4701CrossRef Cao X, Zheng B, Shi W, Yang J, Fan Z, Luo Z, Rui X, Chen B, Yan Q, Zhang H (2015) Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv Mater 27:4695–4701CrossRef
26.
Zurück zum Zitat Lou X, Zeng H (2002) Hydrothermal synthesis of α-MoO3 nanorods via acidification of ammonium heptamolybdate tetrahydrate. Chem Mater 14:4781–4789CrossRef Lou X, Zeng H (2002) Hydrothermal synthesis of α-MoO3 nanorods via acidification of ammonium heptamolybdate tetrahydrate. Chem Mater 14:4781–4789CrossRef
27.
Zurück zum Zitat Li S, Hou H, Huang Z, Liao H, Qiu X, Ji X (2017) Alternating voltage introduced [001]-oriented α-MoO3 microrods for high-performance sodium-ion batteries. Electrochim Acta 245:949–956CrossRef Li S, Hou H, Huang Z, Liao H, Qiu X, Ji X (2017) Alternating voltage introduced [001]-oriented α-MoO3 microrods for high-performance sodium-ion batteries. Electrochim Acta 245:949–956CrossRef
28.
Zurück zum Zitat Cai Y, Yang H, Zhou J, Luo Z, Fang G, Liu S, Pan A, Liang S (2017) Nitrogen doped hollow MoS2/C nanospheres as anode for long-life sodium-ion batteries. Chem Eng J 327:522–529CrossRef Cai Y, Yang H, Zhou J, Luo Z, Fang G, Liu S, Pan A, Liang S (2017) Nitrogen doped hollow MoS2/C nanospheres as anode for long-life sodium-ion batteries. Chem Eng J 327:522–529CrossRef
29.
Zurück zum Zitat Qiu J, Yang Z, Li Y (2015) N-doped carbon encapsulated ultrathin MoO3 nanosheets as superior anodes with high capacity and excellent rate capability for Li-ion batteries. J Mater Chem A 3:24245–24253CrossRef Qiu J, Yang Z, Li Y (2015) N-doped carbon encapsulated ultrathin MoO3 nanosheets as superior anodes with high capacity and excellent rate capability for Li-ion batteries. J Mater Chem A 3:24245–24253CrossRef
30.
Zurück zum Zitat Ji H, Liu X, Liu Z, Yan B, Chen L, Xie Y, Liu C, Hou W, Yang G (2015) In situ preparation of sandwich MoO3/C hybrid nanostructures for high-rate and ultralong-life supercapacitors. Adv Funct Mater 25:1886–1894CrossRef Ji H, Liu X, Liu Z, Yan B, Chen L, Xie Y, Liu C, Hou W, Yang G (2015) In situ preparation of sandwich MoO3/C hybrid nanostructures for high-rate and ultralong-life supercapacitors. Adv Funct Mater 25:1886–1894CrossRef
31.
Zurück zum Zitat Ma F, Yuan A, Xu J, Hu P (2015) Porous alpha-MoO3/MWCNT nanocomposite synthesized via a surfactant-assisted solvothermal route as a lithium-ion-battery high-capacity anode material with excellent rate capability and cyclability. ACS Appl Mater Interfaces 7:15531–15541CrossRef Ma F, Yuan A, Xu J, Hu P (2015) Porous alpha-MoO3/MWCNT nanocomposite synthesized via a surfactant-assisted solvothermal route as a lithium-ion-battery high-capacity anode material with excellent rate capability and cyclability. ACS Appl Mater Interfaces 7:15531–15541CrossRef
32.
Zurück zum Zitat Hariharan S, Saravanan K, Balaya P (2013) α-MoO3: a high performance anode material for sodium-ion batteries. Electrochem Commun 31:5–9CrossRef Hariharan S, Saravanan K, Balaya P (2013) α-MoO3: a high performance anode material for sodium-ion batteries. Electrochem Commun 31:5–9CrossRef
33.
Zurück zum Zitat Liu Y, Zhang B, Xiao S, Liu L, Wen Z, Wu Y (2014) A nanocomposite of MoO3 coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance. Electrochim Acta 116:512–517CrossRef Liu Y, Zhang B, Xiao S, Liu L, Wen Z, Wu Y (2014) A nanocomposite of MoO3 coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance. Electrochim Acta 116:512–517CrossRef
34.
Zurück zum Zitat Guo J, Sun A, Chen X, Wang C, Manivannan A (2011) Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochim Acta 56:3981–3987CrossRef Guo J, Sun A, Chen X, Wang C, Manivannan A (2011) Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochim Acta 56:3981–3987CrossRef
35.
Zurück zum Zitat Xu Y, Zhou M, Wang X, Wang C, Liang L, Grote F, Wu M, Mi Y, Lei Y (2015) Enhancement of sodium ion battery performance enabled by oxygen vacancies. Angew Chem Int Ed Engl 54:8768–8771CrossRef Xu Y, Zhou M, Wang X, Wang C, Liang L, Grote F, Wu M, Mi Y, Lei Y (2015) Enhancement of sodium ion battery performance enabled by oxygen vacancies. Angew Chem Int Ed Engl 54:8768–8771CrossRef
36.
Zurück zum Zitat Li Y, Wang D, An Q, Ren B, Rong Y, Yao Y (2016) Flexible electrode for long-life rechargeable sodium-ion batteries: effect of oxygen vacancy in MoO3−x. J Mater Chem A 4:5402–5405CrossRef Li Y, Wang D, An Q, Ren B, Rong Y, Yao Y (2016) Flexible electrode for long-life rechargeable sodium-ion batteries: effect of oxygen vacancy in MoO3−x. J Mater Chem A 4:5402–5405CrossRef
37.
Zurück zum Zitat Liu T-C, Pell WG, Conway BE, Roberson SL (1998) Behavior of molybdenum nitrides as materials for electrochemical capacitors: comparison with ruthenium oxide. J Electrochem Soc 145:1882–1888CrossRef Liu T-C, Pell WG, Conway BE, Roberson SL (1998) Behavior of molybdenum nitrides as materials for electrochemical capacitors: comparison with ruthenium oxide. J Electrochem Soc 145:1882–1888CrossRef
38.
Zurück zum Zitat Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J Phys Chem C 111:14925–14931CrossRef Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J Phys Chem C 111:14925–14931CrossRef
39.
Zurück zum Zitat Chao D, Zhu C, Yang P, Xia X, Liu J, Wang J, Fan X, Savilov SV, Lin J, Fan HJ, Shen ZX (2016) Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun 7:12122CrossRef Chao D, Zhu C, Yang P, Xia X, Liu J, Wang J, Fan X, Savilov SV, Lin J, Fan HJ, Shen ZX (2016) Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun 7:12122CrossRef
40.
Zurück zum Zitat Mukhopadhyay A, Sheldon BW (2014) Deformation and stress in electrode materials for Li-ion batteries. Prog Mater Sci 63:58–116CrossRef Mukhopadhyay A, Sheldon BW (2014) Deformation and stress in electrode materials for Li-ion batteries. Prog Mater Sci 63:58–116CrossRef
41.
Zurück zum Zitat Zhao Y, Ding C, Hao Y, Zhai X, Wang C, Li Y, Li J, Jin H (2018) Neat design for the structure of electrode to optimize the lithium-ion battery performance. ACS Appl Mater Interfaces 10:27106–27115CrossRef Zhao Y, Ding C, Hao Y, Zhai X, Wang C, Li Y, Li J, Jin H (2018) Neat design for the structure of electrode to optimize the lithium-ion battery performance. ACS Appl Mater Interfaces 10:27106–27115CrossRef
42.
Zurück zum Zitat Yan P, Zheng J, Gu M, Xiao J, Zhang J, Wang C (2017) Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat Commun 8:14101CrossRef Yan P, Zheng J, Gu M, Xiao J, Zhang J, Wang C (2017) Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat Commun 8:14101CrossRef
43.
Zurück zum Zitat Kim H, Cook J, Lin H, Ko J, Tolbert S, Ozolins V, Dunn B (2017) Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat Mater 16:454–460CrossRef Kim H, Cook J, Lin H, Ko J, Tolbert S, Ozolins V, Dunn B (2017) Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat Mater 16:454–460CrossRef
Metadaten
Titel
MoO3 nanoplates: a high-capacity and long-life anode material for sodium-ion batteries
verfasst von
Caihong Yang
Qiankun Xiang
Xuemei Li
Yanqi Xu
Xin Wang
Xiangli Xie
Cunjun Li
Hai Wang
Linjiang Wang
Publikationsdatum
14.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 26/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04788-z

Weitere Artikel der Ausgabe 26/2020

Journal of Materials Science 26/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.