Skip to main content

2024 | OriginalPaper | Buchkapitel

More Teachers Make Greater Students: Compression of CycleGAN

verfasst von : Xiaoxi Liu, Lin Lv, Ju Liu, Yanyang Han, Mengnan Liang, Xiao Jiang

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Generative Adversarial Networks (GANs) have obtained outstanding performance in image-to-image translation. Nevertheless, their applications are greatly limited due to high computational costs. Although past work on compressed GANs has yielded rich results, most still come at the expense of image quality. Therefore, in order to generate high-quality images and simplify the process of distillation, we propose a framework with more generators and fewer discriminators (MGFD) strategy to enhance the online knowledge distillation with high-quality images. First, we introduce the Inception-enhanced residual block into our enhanced teacher generator, which significantly improves image quality at a low cost. Then, the multi-granularity online knowledge distillation method is adopted and simplified by selecting wider Inception-enhanced teacher generator. In addition, we also combine the intermediate layer distillation losses to help student generator to obtain diverse features and more supervised signals from the intermediate layer for better transformations. Experiments demonstrate that our framework can significantly reduce computational costs and generate more natural images.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018) Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity natural image synthesis. arXiv preprint arXiv:​1809.​11096 (2018)
2.
Zurück zum Zitat Li, S., Wu, J., Xiao, X., Chao, F., Mao, X., Ji, R.: Revisiting discriminator in gan compression: a generator-discriminator cooperative compression scheme. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 28560–28572. Curran Associates, Inc. (2021) Li, S., Wu, J., Xiao, X., Chao, F., Mao, X., Ji, R.: Revisiting discriminator in gan compression: a generator-discriminator cooperative compression scheme. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 28560–28572. Curran Associates, Inc. (2021)
3.
Zurück zum Zitat Hu, T., Lin, M., You, L., Chao, F., Ji, R.: Discriminator-cooperated feature map distillation for gan compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20351–20360 (2023) Hu, T., Lin, M., You, L., Chao, F., Ji, R.: Discriminator-cooperated feature map distillation for gan compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20351–20360 (2023)
4.
Zurück zum Zitat Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)
5.
Zurück zum Zitat Chen, H., et al.: Distilling portable generative adversarial networks for image translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3585–3592 (2020) Chen, H., et al.: Distilling portable generative adversarial networks for image translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3585–3592 (2020)
6.
Zurück zum Zitat Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S.: Haq: hardware-aware automated quantization with mixed precision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019) Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S.: Haq: hardware-aware automated quantization with mixed precision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
7.
Zurück zum Zitat Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149 (2015) Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:​1510.​00149 (2015)
8.
Zurück zum Zitat Shu, H., et al.: Co-evolutionary compression for unpaired image translation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019) Shu, H., et al.: Co-evolutionary compression for unpaired image translation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
10.
Zurück zum Zitat Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6793–6803 (2021) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6793–6803 (2021)
11.
Zurück zum Zitat Lv, L.: Research and Implementation of Image-to-Image Translation Based on CycleGAN. Master’s thesis, Shandong University (2023) Lv, L.: Research and Implementation of Image-to-Image Translation Based on CycleGAN. Master’s thesis, Shandong University (2023)
12.
Zurück zum Zitat Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015) Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
13.
Zurück zum Zitat Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016) Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
14.
Zurück zum Zitat Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 31 (2017) Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 31 (2017)
15.
Zurück zum Zitat Jin, Q., et al.: Teachers do more than teach: Compressing image-to-image models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13600–13611 (2021) Jin, Q., et al.: Teachers do more than teach: Compressing image-to-image models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13600–13611 (2021)
16.
Zurück zum Zitat Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018) Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
18.
Zurück zum Zitat Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II, pp. 694–711. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43CrossRef Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II, pp. 694–711. Springer International Publishing, Cham (2016). https://​doi.​org/​10.​1007/​978-3-319-46475-6_​43CrossRef
19.
Zurück zum Zitat Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018) Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
20.
Zurück zum Zitat Yu, A., Grauman, K.: Fine-grained visual comparisons with local learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014) Yu, A., Grauman, K.: Fine-grained visual comparisons with local learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)
21.
Zurück zum Zitat Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
22.
Zurück zum Zitat Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
23.
Zurück zum Zitat Li, Z., Jiang, R., Aarabi, P.: Semantic relation preserving knowledge distillation for image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision - ECCV 2020, pp. 648–663. Springer International Publishing, Cham (2020)CrossRef Li, Z., Jiang, R., Aarabi, P.: Semantic relation preserving knowledge distillation for image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision - ECCV 2020, pp. 648–663. Springer International Publishing, Cham (2020)CrossRef
24.
Zurück zum Zitat Li, M., Lin, J., Ding, Y., Liu, Z., Zhu, J.Y., Han, S.: Gan compression: efficient architectures for interactive conditional gans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020) Li, M., Lin, J., Ding, Y., Liu, Z., Zhu, J.Y., Han, S.: Gan compression: efficient architectures for interactive conditional gans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
25.
Zurück zum Zitat Wang, J., Shu, H., Xia, W., Yang, Y., Wang, Y.: Coarse-to-fine searching for efficient generative adversarial networks. arXiv preprint arXiv:2104.09223 (2021) Wang, J., Shu, H., Xia, W., Yang, Y., Wang, Y.: Coarse-to-fine searching for efficient generative adversarial networks. arXiv preprint arXiv:​2104.​09223 (2021)
27.
Zurück zum Zitat Zhang, L., Chen, X., Tu, X., Wan, P., Xu, N., Ma, K.: Wavelet knowledge distillation: Towards efficient image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12464–12474 (2022) Zhang, L., Chen, X., Tu, X., Wan, P., Xu, N., Ma, K.: Wavelet knowledge distillation: Towards efficient image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12464–12474 (2022)
Metadaten
Titel
More Teachers Make Greater Students: Compression of CycleGAN
verfasst von
Xiaoxi Liu
Lin Lv
Ju Liu
Yanyang Han
Mengnan Liang
Xiao Jiang
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_10