Skip to main content
Erschienen in: Cellulose 10/2018

06.08.2018 | Original Paper

Morphology control for tunable optical properties of cellulose nanofibrils films

verfasst von: Weisheng Yang, Liang Jiao, Wei Liu, Yulin Deng, Hongqi Dai

Erschienen in: Cellulose | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Flexible cellulose nanofibrils film substrates with high smooth surface and high transparency are attractive for next- generation flexible transparent electrical device applications. In recent years, tuning optical properties of the substrates has become more and more important for the fabrication of the transparent electronic devices. In this study, a simple depositing process with micro-scale TEMPO-oxidized wood fibers was utilized to tune top surface morphology of the cellulose nanofibrils films. The influence of the surface morphology on the optical properties was also investigated. As the upper surface roughness increased, the optical haze of the transparent films increased. The obtained films, with total transmittance ranged from 83% to 88%, exhibited relatively low haze of 3.8% to high haze of 62.3%. In addition, the lower surface of cellulose nanofibrils films has a super flat surface, which is required for applications in electronics and optoelectronics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574CrossRef Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574CrossRef
Zurück zum Zitat Bai S, Sun C, Wan P, Wang C, Luo R, Li Y, Liu J, Sun X (2015) Transparent conducting films of hierarchically nanostructured polyaniline networks on flexible substrates for high-performance gas sensors. Small 11:306–310CrossRefPubMed Bai S, Sun C, Wan P, Wang C, Luo R, Li Y, Liu J, Sun X (2015) Transparent conducting films of hierarchically nanostructured polyaniline networks on flexible substrates for high-performance gas sensors. Small 11:306–310CrossRefPubMed
Zurück zum Zitat Chung HH, Lu S (2003) Contrast-ratio analysis of sunlight-readable color LCDs for outdoor applications. J Soc Inf Display 11:237–242CrossRef Chung HH, Lu S (2003) Contrast-ratio analysis of sunlight-readable color LCDs for outdoor applications. J Soc Inf Display 11:237–242CrossRef
Zurück zum Zitat Fang Z, Zhu H, Preston C, Han X, Li Y, Lee S, Chai X, Chen G, Hu L (2013) Highly transparent and writable wood all-cellulose hybrid nanostructured paper. J Mater Chem C 1:6191–6197CrossRef Fang Z, Zhu H, Preston C, Han X, Li Y, Lee S, Chai X, Chen G, Hu L (2013) Highly transparent and writable wood all-cellulose hybrid nanostructured paper. J Mater Chem C 1:6191–6197CrossRef
Zurück zum Zitat Fitz-Gerald J, Piqué A, Chrisey D, Rack P, Zeleznik M, Auyeung R, Lakeou S (2000) Laser direct writing of phosphor screens for high-definition displays. Appl Phys Lett 76:1386–1388CrossRef Fitz-Gerald J, Piqué A, Chrisey D, Rack P, Zeleznik M, Auyeung R, Lakeou S (2000) Laser direct writing of phosphor screens for high-definition displays. Appl Phys Lett 76:1386–1388CrossRef
Zurück zum Zitat Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165CrossRef Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165CrossRef
Zurück zum Zitat Geometries B, Abrasion S (2012) Standard test method for haze and luminous transmittance of transparent plastics. ASTM Int 1:1–7 Geometries B, Abrasion S (2012) Standard test method for haze and luminous transmittance of transparent plastics. ASTM Int 1:1–7
Zurück zum Zitat Guo F, Azimi H, Hou Y, Przybilla T, Hu M, Bronnbauer C, Langner S, Spiecker E, Forberich K, Brabec CJ (2015) High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale 7:1642–1649CrossRefPubMed Guo F, Azimi H, Hou Y, Przybilla T, Hu M, Bronnbauer C, Langner S, Spiecker E, Forberich K, Brabec CJ (2015) High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale 7:1642–1649CrossRefPubMed
Zurück zum Zitat Hassinen T, Eiroma K, Mäkelä T, Ermolov V (2015) Printed pressure sensor matrix with organic field-effect transistors. Sensor Actuat A Phys 236:343–348CrossRef Hassinen T, Eiroma K, Mäkelä T, Ermolov V (2015) Printed pressure sensor matrix with organic field-effect transistors. Sensor Actuat A Phys 236:343–348CrossRef
Zurück zum Zitat Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8:13131–13154CrossRefPubMed Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8:13131–13154CrossRefPubMed
Zurück zum Zitat Hsieh M-C, Koga H, Suganuma K, Nogi M (2017) Hazy transparent cellulose nanopaper. Sci Rep-UK 7:41590CrossRef Hsieh M-C, Koga H, Suganuma K, Nogi M (2017) Hazy transparent cellulose nanopaper. Sci Rep-UK 7:41590CrossRef
Zurück zum Zitat Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6:513–518CrossRef Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6:513–518CrossRef
Zurück zum Zitat Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113CrossRefPubMed Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113CrossRefPubMed
Zurück zum Zitat Hui Z, Liu Y, Guo W, Li L, Mu N, Jin C, Zhu Y, Peng P (2017) Chemical sintering of direct-written silver nanowire flexible electrodes under room temperature. Nanotechnology 28:285703CrossRefPubMed Hui Z, Liu Y, Guo W, Li L, Mu N, Jin C, Zhu Y, Peng P (2017) Chemical sintering of direct-written silver nanowire flexible electrodes under room temperature. Nanotechnology 28:285703CrossRefPubMed
Zurück zum Zitat Kim D-H, Kim Y-S, Amsden J, Panilaitis B, Kaplan DL, Omenetto FG, Zakin MR, Rogers JA (2009) Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl Phys Lett 95:133701CrossRefPubMedPubMedCentral Kim D-H, Kim Y-S, Amsden J, Panilaitis B, Kaplan DL, Omenetto FG, Zakin MR, Rogers JA (2009) Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl Phys Lett 95:133701CrossRefPubMedPubMedCentral
Zurück zum Zitat Kim N, Kang H, Lee JH, Kee S, Lee SH, Lee K (2015) Highly conductive all-plastic electrodes fabricated using a novel chemically controlled transfer-printing method. Adv Mater 27:2317–2323CrossRefPubMed Kim N, Kang H, Lee JH, Kee S, Lee SH, Lee K (2015) Highly conductive all-plastic electrodes fabricated using a novel chemically controlled transfer-printing method. Adv Mater 27:2317–2323CrossRefPubMed
Zurück zum Zitat Koga H, Nogi M, Komoda N, Nge TT, Sugahara T, Suganuma K (2014) Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. Npg Asia Mater 6:e93CrossRef Koga H, Nogi M, Komoda N, Nge TT, Sugahara T, Suganuma K (2014) Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. Npg Asia Mater 6:e93CrossRef
Zurück zum Zitat Leppaniemi J, Eiroma K, Majumdar H, Alastalo A (2017) Far-UV annealed inkjet-printed In2O3 semiconductor layers for thin-film transistors on a flexible polyethylene naphthalate substrate. ACS Appl Mater Inter 9:8774–8782CrossRef Leppaniemi J, Eiroma K, Majumdar H, Alastalo A (2017) Far-UV annealed inkjet-printed In2O3 semiconductor layers for thin-film transistors on a flexible polyethylene naphthalate substrate. ACS Appl Mater Inter 9:8774–8782CrossRef
Zurück zum Zitat Madaria AR, Kumar A, Zhou C (2011) Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 22:245201CrossRefPubMed Madaria AR, Kumar A, Zhou C (2011) Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 22:245201CrossRefPubMed
Zurück zum Zitat Mecking S (2004) Nature or petrochemistry—biologically degradable materials. Angew Chem Int Edit 43:1078–1085CrossRef Mecking S (2004) Nature or petrochemistry—biologically degradable materials. Angew Chem Int Edit 43:1078–1085CrossRef
Zurück zum Zitat Miettunen K, Halme J, Vahermaa P, Saukkonen T, Toivola M, Lund P (2009) Dye solar cells on ITO-PET substrate with TiO2 recombination blocking layers. J Electrochem Soc 156:B876–B883CrossRef Miettunen K, Halme J, Vahermaa P, Saukkonen T, Toivola M, Lund P (2009) Dye solar cells on ITO-PET substrate with TiO2 recombination blocking layers. J Electrochem Soc 156:B876–B883CrossRef
Zurück zum Zitat Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598CrossRef Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598CrossRef
Zurück zum Zitat Nogi M, Iwamoto S, Nakagaito AN, Yano H (2010) Optically Transparent Nanofiber Paper. Adv Mater 21:1595–1598CrossRef Nogi M, Iwamoto S, Nakagaito AN, Yano H (2010) Optically Transparent Nanofiber Paper. Adv Mater 21:1595–1598CrossRef
Zurück zum Zitat Qing Y, Sabo R, Wu Y, Zhu J, Cai Z (2015) Self-assembled optically transparent cellulose nanofibril films: effect of nanofibril morphology and drying procedure. Cellulose 22:1091–1102CrossRef Qing Y, Sabo R, Wu Y, Zhu J, Cai Z (2015) Self-assembled optically transparent cellulose nanofibril films: effect of nanofibril morphology and drying procedure. Cellulose 22:1091–1102CrossRef
Zurück zum Zitat Roth B, Dos RB, Gisele A, Corazza M (2015) The critical choice of PEDOT:PSS additives for long term stability of roll-to-roll processed OPVs. Adv Energy Mater 5:1401912CrossRef Roth B, Dos RB, Gisele A, Corazza M (2015) The critical choice of PEDOT:PSS additives for long term stability of roll-to-roll processed OPVs. Adv Energy Mater 5:1401912CrossRef
Zurück zum Zitat Sadasivuni KK, Kafy A, Zhai L, Ko HU, Mun S, Kim J (2014) Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small 11:994–1002CrossRefPubMed Sadasivuni KK, Kafy A, Zhai L, Ko HU, Mun S, Kim J (2014) Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small 11:994–1002CrossRefPubMed
Zurück zum Zitat Saito T, Kimura S, Nishiyama Y (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491CrossRef Saito T, Kimura S, Nishiyama Y (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491CrossRef
Zurück zum Zitat Su Y, Zhao Y, Zhang H, Feng X, Shi LY, Fang J (2016) Polydopamine functionalized transparent conductive cellulose nanopaper with long-term durability. J Mater Chem C 5:573–581CrossRef Su Y, Zhao Y, Zhang H, Feng X, Shi LY, Fang J (2016) Polydopamine functionalized transparent conductive cellulose nanopaper with long-term durability. J Mater Chem C 5:573–581CrossRef
Zurück zum Zitat Yan Q, Sabo R, Wu Y, Zhu JY, Cai Z (2015) Self-assembled optically transparent cellulose nanofibril films: effect of nanofibril morphology and drying procedure. Cellulose 22:1091–1102CrossRef Yan Q, Sabo R, Wu Y, Zhu JY, Cai Z (2015) Self-assembled optically transparent cellulose nanofibril films: effect of nanofibril morphology and drying procedure. Cellulose 22:1091–1102CrossRef
Zurück zum Zitat Yang W, Jiao L, Min D, Liu Z, Dai H (2017) Effects of preparation approaches on optical properties of self-assembled cellulose nanopapers. RSC Adv 7:10463–10468CrossRef Yang W, Jiao L, Min D, Liu Z, Dai H (2017) Effects of preparation approaches on optical properties of self-assembled cellulose nanopapers. RSC Adv 7:10463–10468CrossRef
Zurück zum Zitat Yao W, Bae K-J, Jung MY, Cho Y-R (2017) Transparent, conductive, and superhydrophobic nanocomposite coatings on polymer substrate. J Colloid Interface Sci 506:429–436CrossRefPubMed Yao W, Bae K-J, Jung MY, Cho Y-R (2017) Transparent, conductive, and superhydrophobic nanocomposite coatings on polymer substrate. J Colloid Interface Sci 506:429–436CrossRefPubMed
Zurück zum Zitat Zhu H, Fang Z, Preston C, Li Y, Hu L (2013a) Transparent paper: Fabrications, properties, and device applications. Energy Environ Sci 7:269–287CrossRef Zhu H, Fang Z, Preston C, Li Y, Hu L (2013a) Transparent paper: Fabrications, properties, and device applications. Energy Environ Sci 7:269–287CrossRef
Zurück zum Zitat Zhu H, Parvinian S, Preston C, Vaaland O, Ruan Z, Hu L (2013b) Transparent nanopaper with tailored optical properties. Nanoscale 5:3787–3792CrossRefPubMed Zhu H, Parvinian S, Preston C, Vaaland O, Ruan Z, Hu L (2013b) Transparent nanopaper with tailored optical properties. Nanoscale 5:3787–3792CrossRefPubMed
Zurück zum Zitat Zhu H, Xiao Z, Liu D, Li Y, Weadock NJ, Fang Z, Huang J, Hu L (2013c) Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ Sci 6:2105–2111CrossRef Zhu H, Xiao Z, Liu D, Li Y, Weadock NJ, Fang Z, Huang J, Hu L (2013c) Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ Sci 6:2105–2111CrossRef
Metadaten
Titel
Morphology control for tunable optical properties of cellulose nanofibrils films
verfasst von
Weisheng Yang
Liang Jiao
Wei Liu
Yulin Deng
Hongqi Dai
Publikationsdatum
06.08.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 10/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1974-1

Weitere Artikel der Ausgabe 10/2018

Cellulose 10/2018 Zur Ausgabe