Skip to main content
Erschienen in:

23.08.2024

MOSFET-only Meminductor Emulator and its Application in Chaotic Oscillator

verfasst von: Aashish Kumar, Shireesh Kumar Rai

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 12/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a grounded meminductor emulator has been proposed using six MOSFETs (3NMOS and 3PMOS) only. Three transconductance stages and two capacitors are generally required to realize a meminductor emulator. Meminductor is considered as an inductor having memory. In the proposed design of meminductor emulator, the gyrator circuit is realized using common-source and common-gate amplifiers with one capacitor. The first capacitor is used to obtain the behaviour of inductance while the second capacitor is used for charge storage which acts as a memory element. In the proposed design of meminductor emulator, the gate-to-source capacitor of MOSFET is utilized in place of external capacitor for memory element. Therefore, the proposed design is free from the requirement of passive components as the required capacitor is formed by MOSFET. Also, the frequency characteristics of proposed meminductor are found to be satisfactory up to 100 MHz. The other essential characteristics such as non-volatility test, temperature analysis, tunability, Monte Carlo, and corner analysis are also found to be satisfactory. The proposed design of meminductor emulator is compared with other existing meminductor emulators. The performance of the emulator is successfully verified through the realization of chaotic oscillator circuit.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat B. Aggarwal, S.K. Rai, New memristor-less, resistor-less, two-OTA based grounded and floating meminductor emulators and their applications in chaotic oscillators. Integration 88, 173–184 (2023)CrossRef B. Aggarwal, S.K. Rai, New memristor-less, resistor-less, two-OTA based grounded and floating meminductor emulators and their applications in chaotic oscillators. Integration 88, 173–184 (2023)CrossRef
2.
Zurück zum Zitat B. Aggarwal, S.K. Rai, A. Arora, A. Siddiqui, R. Das, A floating decremental/incremental meminductor emulator using voltage differencing inverted buffered amplifier and current follower. J. Circuit. Syst. Comp. 32(14), 2350243 (2023)CrossRef B. Aggarwal, S.K. Rai, A. Arora, A. Siddiqui, R. Das, A floating decremental/incremental meminductor emulator using voltage differencing inverted buffered amplifier and current follower. J. Circuit. Syst. Comp. 32(14), 2350243 (2023)CrossRef
3.
Zurück zum Zitat E.J. Altman, Bifurcation analysis of Chua’s circuit with applications for low-level visual sensing. J. Circuit. Syst. Comp. 3(1), 63–92 (1993)MathSciNetCrossRef E.J. Altman, Bifurcation analysis of Chua’s circuit with applications for low-level visual sensing. J. Circuit. Syst. Comp. 3(1), 63–92 (1993)MathSciNetCrossRef
4.
Zurück zum Zitat Y.R. Ananda, G.S. Satyanarayan, G. Trivedi, A flux controlled MOS-based optimized high frequency meminductor emulator. IEEE J. Emerg. Sel. Topics Circuit Syst. 12(4), 774–784 (2022)CrossRef Y.R. Ananda, G.S. Satyanarayan, G. Trivedi, A flux controlled MOS-based optimized high frequency meminductor emulator. IEEE J. Emerg. Sel. Topics Circuit Syst. 12(4), 774–784 (2022)CrossRef
5.
Zurück zum Zitat M.R. Azghadi, B. Linares-Barranco, D. Abbott, P.H.W. Leong, A hybrid CMOS-memristor neuromorphic synapse. IEEE Trans. Biomed. Circuits Syst. 11(2), 434–445 (2016)CrossRef M.R. Azghadi, B. Linares-Barranco, D. Abbott, P.H.W. Leong, A hybrid CMOS-memristor neuromorphic synapse. IEEE Trans. Biomed. Circuits Syst. 11(2), 434–445 (2016)CrossRef
6.
Zurück zum Zitat Y. Babacan, An operational transconductance amplifier-based memcapacitor and meminductor. Electrica 18(1), 36–38 (2018)MathSciNet Y. Babacan, An operational transconductance amplifier-based memcapacitor and meminductor. Electrica 18(1), 36–38 (2018)MathSciNet
7.
Zurück zum Zitat K. Bhardwaj, M. Srivastava, New electronically adjustable memelement emulator for realizing the behaviour of fully-floating meminductor and memristor. Microelectron. J. 114, 105126 (2021)CrossRef K. Bhardwaj, M. Srivastava, New electronically adjustable memelement emulator for realizing the behaviour of fully-floating meminductor and memristor. Microelectron. J. 114, 105126 (2021)CrossRef
8.
Zurück zum Zitat K. Bhardwaj, M. Srivastava, New grounded passive elements-based external multiplier-less memelement emulator to realize the floating meminductor and memristor. Analog Integr. Circ. Sig. Process 110(3), 409–429 (2022)CrossRef K. Bhardwaj, M. Srivastava, New grounded passive elements-based external multiplier-less memelement emulator to realize the floating meminductor and memristor. Analog Integr. Circ. Sig. Process 110(3), 409–429 (2022)CrossRef
9.
Zurück zum Zitat K. Bhardwaj, A. Kumar, M. Srivastava, Universal memelement emulator using only off-the-shelf components. Analog Integr. Circ. Sig. Process 114(2), 175–193 (2023)CrossRef K. Bhardwaj, A. Kumar, M. Srivastava, Universal memelement emulator using only off-the-shelf components. Analog Integr. Circ. Sig. Process 114(2), 175–193 (2023)CrossRef
10.
Zurück zum Zitat E. Bilotta, S. Gervasi, P. Pantano, Reading complexity in Chua’s oscillator through music. Part I: A new way of understanding chaos. Int. J. Bifurcation Chaos 15(2), 253–382 (2005)CrossRef E. Bilotta, S. Gervasi, P. Pantano, Reading complexity in Chua’s oscillator through music. Part I: A new way of understanding chaos. Int. J. Bifurcation Chaos 15(2), 253–382 (2005)CrossRef
11.
Zurück zum Zitat L.O. Chua, Memristor-The missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRef L.O. Chua, Memristor-The missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRef
12.
Zurück zum Zitat L. Chua, Chua’s circuit 10 years later. Int. J. Circuit Theory Appl. 22(4), 279–305 (2006)CrossRef L. Chua, Chua’s circuit 10 years later. Int. J. Circuit Theory Appl. 22(4), 279–305 (2006)CrossRef
13.
Zurück zum Zitat R. Das, S.K. Rai, B. Aggarwal, A floating meminductor emulator using modified differential voltage current conveyor transconductance amplifier and its application. Analog Integr. Circuits Sig. Process. 119(3), 475–496 (2024)CrossRef R. Das, S.K. Rai, B. Aggarwal, A floating meminductor emulator using modified differential voltage current conveyor transconductance amplifier and its application. Analog Integr. Circuits Sig. Process. 119(3), 475–496 (2024)CrossRef
14.
Zurück zum Zitat M. Di Ventra, Y.V. Pershin, L.O. Chua, Circuit elements with memory: Memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)CrossRef M. Di Ventra, Y.V. Pershin, L.O. Chua, Circuit elements with memory: Memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)CrossRef
16.
Zurück zum Zitat D. Ersoy, F. Kacar, Electronically charge-controlled tunable meminductor emulator circuit with OTAs and its applications. IEEE Access 11, 53290–53300 (2023)CrossRef D. Ersoy, F. Kacar, Electronically charge-controlled tunable meminductor emulator circuit with OTAs and its applications. IEEE Access 11, 53290–53300 (2023)CrossRef
17.
Zurück zum Zitat M. E. Fouda, A. G. Radwan, Memristor-less current-and voltage-controlled meminductor emulators. in 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS) (pp. 279–282). IEEE, 2014. M. E. Fouda, A. G. Radwan, Memristor-less current-and voltage-controlled meminductor emulators. in 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS) (pp. 279–282). IEEE, 2014.
18.
Zurück zum Zitat A. Goel, S.K. Rai, B. Aggarwal, A new generalized approach for the realization of meminductor emulator and its application. Wireless Pers. Commun. (Springer) 131, 2501–2523 (2023)CrossRef A. Goel, S.K. Rai, B. Aggarwal, A new generalized approach for the realization of meminductor emulator and its application. Wireless Pers. Commun. (Springer) 131, 2501–2523 (2023)CrossRef
19.
Zurück zum Zitat A. Gupta, S.K. Rai, M. Gupta, A fractional-order meminductor emulator using OTA and CDBA with application in adaptive learning circuit. Wireless Pers. Commun. (Springer) 131, 2675–2696 (2023)CrossRef A. Gupta, S.K. Rai, M. Gupta, A fractional-order meminductor emulator using OTA and CDBA with application in adaptive learning circuit. Wireless Pers. Commun. (Springer) 131, 2675–2696 (2023)CrossRef
20.
Zurück zum Zitat D. Hanbay, I. Turkoglu, Y. Demir, An expert system based on wavelet decomposition and neural network for modeling Chua’s circuit. Expert Syst. Appl. 34(4), 2278–2283 (2008)CrossRef D. Hanbay, I. Turkoglu, Y. Demir, An expert system based on wavelet decomposition and neural network for modeling Chua’s circuit. Expert Syst. Appl. 34(4), 2278–2283 (2008)CrossRef
21.
Zurück zum Zitat M. Hu, H. Li, Y. Chen, Q. Wu, G.S. Rose, R.W. Linderman, Memristor crossbar-based neuromorphic computing system: A case study. IEEE Trans. Neural Netw. Learn. Syst. 25(10), 1864–1878 (2014)CrossRef M. Hu, H. Li, Y. Chen, Q. Wu, G.S. Rose, R.W. Linderman, Memristor crossbar-based neuromorphic computing system: A case study. IEEE Trans. Neural Netw. Learn. Syst. 25(10), 1864–1878 (2014)CrossRef
23.
Zurück zum Zitat H. Jain, B. Aggarwal, S.K. Rai, New modified voltage differencing voltage transconductance amplifier (MVDVTA) based meminductor emulator and its applications. Indian J. Pure Appl. Phys. (CSIR) 61(4), 239–246 (2023) H. Jain, B. Aggarwal, S.K. Rai, New modified voltage differencing voltage transconductance amplifier (MVDVTA) based meminductor emulator and its applications. Indian J. Pure Appl. Phys. (CSIR) 61(4), 239–246 (2023)
24.
Zurück zum Zitat H. Jain, S.K. Rai, B. Aggarwal, A new electronically tunable current differencing transconductance amplifier based meminductor emulator and its application. Indian J. Eng. Mater. Sci. (CSIR) 30(8), 550–558 (2023) H. Jain, S.K. Rai, B. Aggarwal, A new electronically tunable current differencing transconductance amplifier based meminductor emulator and its application. Indian J. Eng. Mater. Sci. (CSIR) 30(8), 550–558 (2023)
25.
Zurück zum Zitat M. Konal, F. Kacar, Electronically tunable meminductor based on OTA. AEU-Int. J. Electron. Commun. 126, 153391 (2020)CrossRef M. Konal, F. Kacar, Electronically tunable meminductor based on OTA. AEU-Int. J. Electron. Commun. 126, 153391 (2020)CrossRef
26.
Zurück zum Zitat M.O. Korkmaz, Y. Babacan, A. Yesil, A new CCII based meminductor emulator circuit and its experimental results. AEU-Int. J. Electron. Commun. 158, 154450 (2023)CrossRef M.O. Korkmaz, Y. Babacan, A. Yesil, A new CCII based meminductor emulator circuit and its experimental results. AEU-Int. J. Electron. Commun. 158, 154450 (2023)CrossRef
27.
Zurück zum Zitat P. Kumar, A.M. Bhat, P.K. Sharma, R.K. Ranjan, A novel and compact MOSFET-C only based grounded meminductor emulator and its application. AEU-Int. J. Electron. Commun. 183, 155378 (2024)CrossRef P. Kumar, A.M. Bhat, P.K. Sharma, R.K. Ranjan, A novel and compact MOSFET-C only based grounded meminductor emulator and its application. AEU-Int. J. Electron. Commun. 183, 155378 (2024)CrossRef
28.
Zurück zum Zitat K. Kumar, B.C. Nagar, New tunable resistorless grounded meminductor emulator. J. Comput. Electron. 20(3), 1452–1460 (2021)CrossRef K. Kumar, B.C. Nagar, New tunable resistorless grounded meminductor emulator. J. Comput. Electron. 20(3), 1452–1460 (2021)CrossRef
29.
Zurück zum Zitat Y. Liang, H. Chen, D.S. Yu, A practical implementation of a floating memristor-less meminductor emulator. IEEE Trans. Circuits Syst. II Express Briefs 61(5), 299–303 (2014) Y. Liang, H. Chen, D.S. Yu, A practical implementation of a floating memristor-less meminductor emulator. IEEE Trans. Circuits Syst. II Express Briefs 61(5), 299–303 (2014)
30.
Zurück zum Zitat R. N. Madan. Chua's circuit: A paradigm for chaos. World Scientific, 1, 1993. R. N. Madan. Chua's circuit: A paradigm for chaos. World Scientific, 1, 1993.
31.
Zurück zum Zitat S. Majzoub, A.S. Elwakil, C. Psychalinos, B.J. Maundy, On the mechanism of creating pinched hysteresis loops using a commercial memristor device. AEU-Int. J. Electron. Commun. 111, 152923 (2019)CrossRef S. Majzoub, A.S. Elwakil, C. Psychalinos, B.J. Maundy, On the mechanism of creating pinched hysteresis loops using a commercial memristor device. AEU-Int. J. Electron. Commun. 111, 152923 (2019)CrossRef
32.
Zurück zum Zitat Y.V. Pershin, M. Di Ventra, Practical approach to programmable analog circuits with memristors. IEEE Trans. Circuits Syst. I Regul. Pap. 57(8), 1857–1864 (2010)MathSciNetCrossRef Y.V. Pershin, M. Di Ventra, Practical approach to programmable analog circuits with memristors. IEEE Trans. Circuits Syst. I Regul. Pap. 57(8), 1857–1864 (2010)MathSciNetCrossRef
33.
Zurück zum Zitat Y.V. Pershin, M. Di Ventra, Memristive circuits simulate memcapacitors and meminductors. Electron. Lett. 46(7), 517–518 (2010)CrossRef Y.V. Pershin, M. Di Ventra, Memristive circuits simulate memcapacitors and meminductors. Electron. Lett. 46(7), 517–518 (2010)CrossRef
34.
Zurück zum Zitat P.B. Petrovic, A new electronically controlled floating/grounded meminductor emulator based on single MO-VDTA. Analog Integr. Circ. Sig. Process 110(1), 185–195 (2022)CrossRef P.B. Petrovic, A new electronically controlled floating/grounded meminductor emulator based on single MO-VDTA. Analog Integr. Circ. Sig. Process 110(1), 185–195 (2022)CrossRef
35.
Zurück zum Zitat S.K. Rai, B. Aggarwal, V. Singroha, Meminductor emulators using off-the-shelf active blocks with application in chaotic oscillator. Integration 96, 1021165 (2024)CrossRef S.K. Rai, B. Aggarwal, V. Singroha, Meminductor emulators using off-the-shelf active blocks with application in chaotic oscillator. Integration 96, 1021165 (2024)CrossRef
36.
Zurück zum Zitat A. Raj, S. Singh, P. Kumar, Electronically tunable high frequency single output OTA and DVCC based meminductor. Analog Integr. Circ. Sig. Process 109(1), 47–55 (2021)CrossRef A. Raj, S. Singh, P. Kumar, Electronically tunable high frequency single output OTA and DVCC based meminductor. Analog Integr. Circ. Sig. Process 109(1), 47–55 (2021)CrossRef
37.
Zurück zum Zitat A. Raj, K. Kumar, P. Kumar, CMOS realization of OTA based tunable grounded meminductor. Analog Integr. Circ. Sig. Process 107(2), 475–482 (2021)CrossRef A. Raj, K. Kumar, P. Kumar, CMOS realization of OTA based tunable grounded meminductor. Analog Integr. Circ. Sig. Process 107(2), 475–482 (2021)CrossRef
38.
Zurück zum Zitat R.K. Ranjan, S.M. Kang, Resistorless floating/grounded memristor emulator model with electronic tunability. IEEE Trans. Circuits Syst. II Express Briefs 70(7), 2340–2344 (2023) R.K. Ranjan, S.M. Kang, Resistorless floating/grounded memristor emulator model with electronic tunability. IEEE Trans. Circuits Syst. II Express Briefs 70(7), 2340–2344 (2023)
39.
Zurück zum Zitat F.J. Romero, A. Medina-Garcia, M. Escudero, D.P. Morales, N. Rodriguez, Design and implementation of a floating meminductor emulator upon Riordan gyrator. AEU-Int. J. Electron. Commun. 133, 153671 (2021)CrossRef F.J. Romero, A. Medina-Garcia, M. Escudero, D.P. Morales, N. Rodriguez, Design and implementation of a floating meminductor emulator upon Riordan gyrator. AEU-Int. J. Electron. Commun. 133, 153671 (2021)CrossRef
40.
Zurück zum Zitat F.J. Romero, M. Escudero, A. Medina-Garcia, D.P. Morales, N. Rodriguez, Meminductor emulator based on a modified Antoniou’s gyrator circuit. Electronics 9(9), 1407 (2020)CrossRef F.J. Romero, M. Escudero, A. Medina-Garcia, D.P. Morales, N. Rodriguez, Meminductor emulator based on a modified Antoniou’s gyrator circuit. Electronics 9(9), 1407 (2020)CrossRef
41.
Zurück zum Zitat M.P. Sah, R.K. Budhathoki, C. Yang, H. Kim, Mutator-based meminductor emulator for circuit applications. Circuits Syst. Signal Process. 33(8), 2363–2383 (2014)CrossRef M.P. Sah, R.K. Budhathoki, C. Yang, H. Kim, Mutator-based meminductor emulator for circuit applications. Circuits Syst. Signal Process. 33(8), 2363–2383 (2014)CrossRef
42.
Zurück zum Zitat F. Setoudeh, M. Dousti, Analysis and implementation of a meminductor-based colpitts sinusoidal oscillator. Chaos Solitons Fractals 156, 111814 (2022)MathSciNetCrossRef F. Setoudeh, M. Dousti, Analysis and implementation of a meminductor-based colpitts sinusoidal oscillator. Chaos Solitons Fractals 156, 111814 (2022)MathSciNetCrossRef
43.
Zurück zum Zitat N. Sharma, P. Kumar, S.K. Rai, Chua’s oscillator-based RSA algorithm with authenticated masked public key for secure communication. IEEE Trans. Consum. Electron. 69(4), 1124–1132 (2023)CrossRef N. Sharma, P. Kumar, S.K. Rai, Chua’s oscillator-based RSA algorithm with authenticated masked public key for secure communication. IEEE Trans. Consum. Electron. 69(4), 1124–1132 (2023)CrossRef
44.
Zurück zum Zitat N. Sharma, P. Kumar, S.K. Rai, A novel method for authentication using chaotic behaviour of Chua’s oscillator in (n, k) secret shared data scheme for secure communication. IEEE Trans. Circuits Syst. I Regul. Pap. 70(5), 2098–2105 (2023)CrossRef N. Sharma, P. Kumar, S.K. Rai, A novel method for authentication using chaotic behaviour of Chua’s oscillator in (n, k) secret shared data scheme for secure communication. IEEE Trans. Circuits Syst. I Regul. Pap. 70(5), 2098–2105 (2023)CrossRef
45.
Zurück zum Zitat P.K. Sharma, S. Tasneem, R.K. Ranjan, A new electronic tunable high-frequency meminductor emulator based on a single VDTA. IEEE Can. J. Electr. Comput. Eng. 46(2), 179–184 (2023)CrossRef P.K. Sharma, S. Tasneem, R.K. Ranjan, A new electronic tunable high-frequency meminductor emulator based on a single VDTA. IEEE Can. J. Electr. Comput. Eng. 46(2), 179–184 (2023)CrossRef
46.
Zurück zum Zitat A. Singh, S.K. Rai, Novel meminductor emulators using operational amplifiers and their applications in chaotic oscillators. J. Circuits, Syst. Computers 30(12), 2150219 (2021)CrossRef A. Singh, S.K. Rai, Novel meminductor emulators using operational amplifiers and their applications in chaotic oscillators. J. Circuits, Syst. Computers 30(12), 2150219 (2021)CrossRef
47.
Zurück zum Zitat A. Singh, S. S. Borah, M. Ghosh, Simple grounded meminductor emulator using transconductance amplifier. in 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 1108–1111). IEEE, 2021. A. Singh, S. S. Borah, M. Ghosh, Simple grounded meminductor emulator using transconductance amplifier. in 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 1108–1111). IEEE, 2021.
48.
Zurück zum Zitat A. Singh, S.K. Rai, VDCC-based memcapacitor/meminductor emulator and its application in adaptive learning circuit. Iran. J. Sci. Technol., Trans. Electr. Eng. 45(4), 1151–1163 (2021)CrossRef A. Singh, S.K. Rai, VDCC-based memcapacitor/meminductor emulator and its application in adaptive learning circuit. Iran. J. Sci. Technol., Trans. Electr. Eng. 45(4), 1151–1163 (2021)CrossRef
49.
Zurück zum Zitat A. Singh, S.K. Rai, OTA and CDTA-based new memristor-less meminductor emulators and their applications. J. Comput. Electron. 21(4), 1026–1037 (2022)CrossRef A. Singh, S.K. Rai, OTA and CDTA-based new memristor-less meminductor emulators and their applications. J. Comput. Electron. 21(4), 1026–1037 (2022)CrossRef
50.
Zurück zum Zitat A. Singh, S.K. Rai, New meminductor emulators using single operational amplifier and their application. Circuits, Syst., Sig. Process. 41(4), 2322–2337 (2022)CrossRef A. Singh, S.K. Rai, New meminductor emulators using single operational amplifier and their application. Circuits, Syst., Sig. Process. 41(4), 2322–2337 (2022)CrossRef
51.
Zurück zum Zitat H. Sozen, U. Cam, A novel floating/grounded meminductor emulator. J. Circuits, Syst. Comp. 29(15), 2050247 (2020)CrossRef H. Sozen, U. Cam, A novel floating/grounded meminductor emulator. J. Circuits, Syst. Comp. 29(15), 2050247 (2020)CrossRef
52.
Zurück zum Zitat D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008)CrossRef D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008)CrossRef
53.
Zurück zum Zitat Z.G.Ç.K.M. Sağbaş, U.E. Ayten, H. Sedef, A new universal mutator circuit for memcapacitor and meminductor elements. AEU-Int. J. Electron. Commun. 119, 153180 (2020)CrossRef Z.G.Ç.K.M. Sağbaş, U.E. Ayten, H. Sedef, A new universal mutator circuit for memcapacitor and meminductor elements. AEU-Int. J. Electron. Commun. 119, 153180 (2020)CrossRef
54.
Zurück zum Zitat M. Tatovic, P.B. Petrovic, Single active block-based emulators for electronically controllable floating meminductors and memcapacitors. Radioengineering 32(4), 569 (2023)CrossRef M. Tatovic, P.B. Petrovic, Single active block-based emulators for electronically controllable floating meminductors and memcapacitors. Radioengineering 32(4), 569 (2023)CrossRef
55.
Zurück zum Zitat P. Thongdit, S. Chunchay, K. Angkeaw, A meminductor emulator based on flux-controlled model using field programmable analog array. in 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 51–54). IEEE, 2020. P. Thongdit, S. Chunchay, K. Angkeaw, A meminductor emulator based on flux-controlled model using field programmable analog array. in 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 51–54). IEEE, 2020.
56.
Zurück zum Zitat A. Verma, S. K. Rai, M. Gupta, High frequency meminductor emulator using current conveyor transconductance amplifier and memristor. in 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 720–725), 2021 A. Verma, S. K. Rai, M. Gupta, High frequency meminductor emulator using current conveyor transconductance amplifier and memristor. in 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 720–725), 2021
57.
Zurück zum Zitat J. Vista, A. Ranjan, High frequency meminductor emulator employing VDTA and its application. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(10), 2020–2028 (2019)CrossRef J. Vista, A. Ranjan, High frequency meminductor emulator employing VDTA and its application. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(10), 2020–2028 (2019)CrossRef
58.
Zurück zum Zitat C. K. Volos, I. M. Kyprianidis, I. N. Stouboulos, E. Tlelo-Cuautle, S. Vaidyanathan, Memristor: a new concept in synchronization of coupled neuromorphic circuits. (2015) C. K. Volos, I. M. Kyprianidis, I. N. Stouboulos, E. Tlelo-Cuautle, S. Vaidyanathan, Memristor: a new concept in synchronization of coupled neuromorphic circuits. (2015)
59.
Zurück zum Zitat F.Z. Wang, Beyond memristors: neuromorphic computing using meminductors. Micromachines 14(2), 486 (2023)CrossRef F.Z. Wang, Beyond memristors: neuromorphic computing using meminductors. Micromachines 14(2), 486 (2023)CrossRef
60.
Zurück zum Zitat N. Yadav, S.K. Rai, R. Pandey, New grounded and floating memristor-less meminductor emulators using VDTA and CDBA. J. Circuits Syst. Comp. 30(15), 2150283 (2021)CrossRef N. Yadav, S.K. Rai, R. Pandey, New grounded and floating memristor-less meminductor emulators using VDTA and CDBA. J. Circuits Syst. Comp. 30(15), 2150283 (2021)CrossRef
62.
Zurück zum Zitat N. Yadav, S.K. Rai, R. Pandey, An electronically tunable meminductor emulator and its application in chaotic oscillator and adaptive learning circuit. J. Circuits Syst. Comp. 32(2), 2350031 (2023)CrossRef N. Yadav, S.K. Rai, R. Pandey, An electronically tunable meminductor emulator and its application in chaotic oscillator and adaptive learning circuit. J. Circuits Syst. Comp. 32(2), 2350031 (2023)CrossRef
63.
Zurück zum Zitat N. Yadav, S.K. Rai, R. Pandey, Simple grounded and floating meminductor emulators based on VDGA and CDBA with application in adaptive learning circuit. J. Comput. Electron. 22(1), 531–548 (2023) N. Yadav, S.K. Rai, R. Pandey, Simple grounded and floating meminductor emulators based on VDGA and CDBA with application in adaptive learning circuit. J. Comput. Electron. 22(1), 531–548 (2023)
64.
Zurück zum Zitat H. A. Yildiz, S. Ozoguz, Design consideration of meminductor emulator. in 2021 13th International Conference on Electrical and Electronics Engineering (ELECO) (pp. 24–28). IEEE, (2021) H. A. Yildiz, S. Ozoguz, Design consideration of meminductor emulator. in 2021 13th International Conference on Electrical and Electronics Engineering (ELECO) (pp. 24–28). IEEE, (2021)
65.
Zurück zum Zitat D. Yu, Y. Liang, H. H. C. Iu, T. Fernando, An emulator of mutual meminductors. IEICE Proc. Series, 47(C2L-F-1), 2015. D. Yu, Y. Liang, H. H. C. Iu, T. Fernando, An emulator of mutual meminductors. IEICE Proc. Series, 47(C2L-F-1), 2015.
66.
Zurück zum Zitat D. Yu, X. Zhao, T. Sun, H.H. Iu, T. Fernando, A simple floating mutator for emulating memristor, memcapacitor, and meminductor. IEEE Trans. Circuits Syst. II Express Briefs 67(7), 1334–1338 (2019) D. Yu, X. Zhao, T. Sun, H.H. Iu, T. Fernando, A simple floating mutator for emulating memristor, memcapacitor, and meminductor. IEEE Trans. Circuits Syst. II Express Briefs 67(7), 1334–1338 (2019)
67.
Zurück zum Zitat F. Yuan, G. Wang, P. Jin, X. Wang, G. Ma, Chaos in a meminductor-based circuit. Int. J. Bifurcation Chaos 26(08), 1650130 (2016)MathSciNetCrossRef F. Yuan, G. Wang, P. Jin, X. Wang, G. Ma, Chaos in a meminductor-based circuit. Int. J. Bifurcation Chaos 26(08), 1650130 (2016)MathSciNetCrossRef
68.
Zurück zum Zitat F. Yuan, Y. Li, A chaotic circuit constructed by, a memristor a memcapacitor and a meminductor. Chaos: An Interdisciplinary J. Nonlinear Sci. 29(10), 101101 (2019)MathSciNetCrossRef F. Yuan, Y. Li, A chaotic circuit constructed by, a memristor a memcapacitor and a meminductor. Chaos: An Interdisciplinary J. Nonlinear Sci. 29(10), 101101 (2019)MathSciNetCrossRef
69.
Zurück zum Zitat F. Yuan, Y. Deng, Y. Li, G. Wang, The amplitude, frequency and parameter space boosting in a memristor–meminductor-based circuit. Nonlinear Dyn. 96(1), 389–405 (2019)CrossRef F. Yuan, Y. Deng, Y. Li, G. Wang, The amplitude, frequency and parameter space boosting in a memristor–meminductor-based circuit. Nonlinear Dyn. 96(1), 389–405 (2019)CrossRef
70.
Zurück zum Zitat F. Yuan, Y. Deng, Y. Li, A multistable generalized meminductor with coexisting stable pinched hysteresis loops. Int. J. Bifurcation Chaos 30(02), 2050023 (2020)MathSciNetCrossRef F. Yuan, Y. Deng, Y. Li, A multistable generalized meminductor with coexisting stable pinched hysteresis loops. Int. J. Bifurcation Chaos 30(02), 2050023 (2020)MathSciNetCrossRef
71.
Zurück zum Zitat D.D. Zhai, F.Q. Wang, Simple double-scroll chaotic circuit based on meminductor. J. Circuits, Syst. Comp. 29(03), 2050048 (2020)CrossRef D.D. Zhai, F.Q. Wang, Simple double-scroll chaotic circuit based on meminductor. J. Circuits, Syst. Comp. 29(03), 2050048 (2020)CrossRef
Metadaten
Titel
MOSFET-only Meminductor Emulator and its Application in Chaotic Oscillator
verfasst von
Aashish Kumar
Shireesh Kumar Rai
Publikationsdatum
23.08.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 12/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02833-9