Skip to main content
Erschienen in: Artificial Life and Robotics 2/2020

29.11.2019 | Original Article

Motor control mechanism underlying pedaling skills: an analysis of bilateral coordination in the lower extremities

verfasst von: Takuhiro Sato, Riki Kurematsu, Shota Shigetome, Taiki Matsumoto, Kazuki Tsuruda, Tatsushi Tokuyasu

Erschienen in: Artificial Life and Robotics | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the field of competitive cycling, non-traumatic injuries arising from muscle fatigue have been recognized as a significant problem. Although muscle coordination of the lower extremities is key to achieve high efficiency in pedaling, only a few prior studies have quantified the bilateral coordination of both legs. This quantification could contribute to the understanding of how enhanced pedaling skills may help to reduce muscle fatigue. The aim of this study was to investigate the mechanism underlying inter-lower limb coordination, which should serve to extend the understanding of pedaling skills further. First, 11 healthy males were instructed to pedal for 30 s under a 150-W exercise load and at cadences of 70, 90, and 110 rpm. Next, we investigated the synergistic activity—known as muscle synergy—of both the left and right legs based on the time frequency components of surface electromyography, along with the crank rotation angle during the pedaling exercise. The results indicate that the muscle synergy of bilateral muscle coordination reflects the motor adaptation to pedaling rate during cycling, and the functional roles of the left and right legs differ with changes in cadence and cycling experience. In conclusion, the motor control mechanism underlying pedaling skills is explained by the bilateral muscle coordination related to actions, such as pushing a pedal down using one leg, while pulling the other pedal up using the other leg during pedaling. This conclusion casts doubt on investigations into the efficiency of the pedaling done by a single leg.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dettori NJ, Norvell DC (2006) Non-traumatic bicycle injuries: a review of the literature. Sports Med 36(1):7–18CrossRef Dettori NJ, Norvell DC (2006) Non-traumatic bicycle injuries: a review of the literature. Sports Med 36(1):7–18CrossRef
2.
Zurück zum Zitat Asmussen E (1979) Muscle fatigue. Med Sci Sports Exerc 11(4):313–321CrossRef Asmussen E (1979) Muscle fatigue. Med Sci Sports Exerc 11(4):313–321CrossRef
3.
Zurück zum Zitat Korff T, Romer LM, Mayhew I, Martin JC (2007) Effect of pedaling technique on mechanical effectiveness and efficiency in cyclists. Med Sci Sports Exerc 39(6):991–995CrossRef Korff T, Romer LM, Mayhew I, Martin JC (2007) Effect of pedaling technique on mechanical effectiveness and efficiency in cyclists. Med Sci Sports Exerc 39(6):991–995CrossRef
4.
Zurück zum Zitat Hug F, Dorel S (2009) Electromyographic analysis of pedaling: a review. J Electromyogr Kines 19(2):182–198CrossRef Hug F, Dorel S (2009) Electromyographic analysis of pedaling: a review. J Electromyogr Kines 19(2):182–198CrossRef
5.
Zurück zum Zitat Sato T, Tokuyasu T (2017) Pedaling skill training system with visual feedback of muscle activity pattern. J Biomech Sci Eng 12(4):17–00234CrossRef Sato T, Tokuyasu T (2017) Pedaling skill training system with visual feedback of muscle activity pattern. J Biomech Sci Eng 12(4):17–00234CrossRef
6.
Zurück zum Zitat Hug F, Turpin NA, Guével A, Dorel S (2010) Is interindividual variability of EMG patterns in trained cyclists related to different muscle synergies? J Appl Physiol 108(6):1727–1736CrossRef Hug F, Turpin NA, Guével A, Dorel S (2010) Is interindividual variability of EMG patterns in trained cyclists related to different muscle synergies? J Appl Physiol 108(6):1727–1736CrossRef
7.
Zurück zum Zitat D’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 6(3):300–308CrossRef D’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 6(3):300–308CrossRef
8.
Zurück zum Zitat Hug F, Turpin NA, Couturier A, Dorel S (2011) Consistency of muscle synergies during pedaling across different mechanical constraints. J Neurophysiol 106(1):91–103CrossRef Hug F, Turpin NA, Couturier A, Dorel S (2011) Consistency of muscle synergies during pedaling across different mechanical constraints. J Neurophysiol 106(1):91–103CrossRef
9.
Zurück zum Zitat Blake OM, Wakeling JM (2015) Muscle coordination limits efficiency and power output of human limb movement under a wide range of mechanical demands. J Neurophysiol 114(6):3283–3295CrossRef Blake OM, Wakeling JM (2015) Muscle coordination limits efficiency and power output of human limb movement under a wide range of mechanical demands. J Neurophysiol 114(6):3283–3295CrossRef
10.
Zurück zum Zitat Hermie JH, Bart F, Roberto M, et al (1999) SENIAM: European recommendations for surface electromyography. Enschede, The Netherlands Hermie JH, Bart F, Roberto M, et al (1999) SENIAM: European recommendations for surface electromyography. Enschede, The Netherlands
11.
Zurück zum Zitat Karlsson JY, Akay M (2000) Time–frequency analysis of myoelectric signals during dynamic contractions: a comparative study. IEEE Trans Biomed Eng 47(2):228–238CrossRef Karlsson JY, Akay M (2000) Time–frequency analysis of myoelectric signals during dynamic contractions: a comparative study. IEEE Trans Biomed Eng 47(2):228–238CrossRef
12.
Zurück zum Zitat Dingwell J, Joubert J, Diefenthaeler F, Trinity J (2008) Changes in muscle activity and kinematics of highly trained cyclists during fatigue. IEEE Trans Biomed Eng 55(11):2666–2674CrossRef Dingwell J, Joubert J, Diefenthaeler F, Trinity J (2008) Changes in muscle activity and kinematics of highly trained cyclists during fatigue. IEEE Trans Biomed Eng 55(11):2666–2674CrossRef
13.
Zurück zum Zitat Tscharner VV (2000) Intensity analysis in time-frequency space of surface myoelectric signals by wavelets of specified resolution. J Electromyogr Kines 10(6):433–445CrossRef Tscharner VV (2000) Intensity analysis in time-frequency space of surface myoelectric signals by wavelets of specified resolution. J Electromyogr Kines 10(6):433–445CrossRef
15.
Zurück zum Zitat Enders H, Maurer C, Baltich J, Nigg BM (2013) Task-oriented control of muscle coordination during cycling. Med Sci Sports Exerc 45(12):2298–2305CrossRef Enders H, Maurer C, Baltich J, Nigg BM (2013) Task-oriented control of muscle coordination during cycling. Med Sci Sports Exerc 45(12):2298–2305CrossRef
17.
Zurück zum Zitat Patterson RP, Moreno MI (1990) Bicycle pedalling forces as a function of pedalling rate and power output. Med Sci Sports Exerc 22(4):512–516CrossRef Patterson RP, Moreno MI (1990) Bicycle pedalling forces as a function of pedalling rate and power output. Med Sci Sports Exerc 22(4):512–516CrossRef
18.
Zurück zum Zitat Routson RL, Kautz SA, Neptune RR (2014) Modular organization across changing task demands in healthy and poststroke gait. Clin Neurophysiol 2(6):e12055 Routson RL, Kautz SA, Neptune RR (2014) Modular organization across changing task demands in healthy and poststroke gait. Clin Neurophysiol 2(6):e12055
19.
Zurück zum Zitat Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA (2010) Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol 103(2):844–857CrossRef Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA (2010) Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol 103(2):844–857CrossRef
20.
Zurück zum Zitat Willian JK, Douglas AN (2003) Early skill learning is expressed through selection and tuning of cortically represented muscle synergies. J Neurosci 23(35):11255–11269CrossRef Willian JK, Douglas AN (2003) Early skill learning is expressed through selection and tuning of cortically represented muscle synergies. J Neurosci 23(35):11255–11269CrossRef
Metadaten
Titel
Motor control mechanism underlying pedaling skills: an analysis of bilateral coordination in the lower extremities
verfasst von
Takuhiro Sato
Riki Kurematsu
Shota Shigetome
Taiki Matsumoto
Kazuki Tsuruda
Tatsushi Tokuyasu
Publikationsdatum
29.11.2019
Verlag
Springer Japan
Erschienen in
Artificial Life and Robotics / Ausgabe 2/2020
Print ISSN: 1433-5298
Elektronische ISSN: 1614-7456
DOI
https://doi.org/10.1007/s10015-019-00580-8

Weitere Artikel der Ausgabe 2/2020

Artificial Life and Robotics 2/2020 Zur Ausgabe

Neuer Inhalt