Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Progress in Additive Manufacturing 2/2020

17.10.2019 | Full Research Article

MP Welding of dissimilar materials: AM laser powder-bed fusion AlSi10Mg to wrought AA6060-T6

verfasst von: V. Shribman, M. Nahmany, S. Levi, O. Atiya, D. Ashkenazi, A. Stern

Erschienen in: Progress in Additive Manufacturing | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Magnetic pulse welding (MPW) is a clean and green solid-state method that provides metallurgical joints. MPW is a high-speed single-shot welding technique. Additive manufacturing (AM) laser powder-bed fusion method is an emerging technology, but so far shows size limitations of the three-dimensional (3D) printed parts. One way to overcome these limitations is joining AM to AM parts and/or AM to wrought components by welding. This contribution discusses, for the first time, the microstructures observed in the bonding zone during MPW of AM laser powder-bed fusion AlSi10Mg and wrought AA6060-T6. The origin of the MPW morphologies and the distribution of the alloying elements were studied. A continuous defect-free joint was observed, presenting the typical wavy interface. The residue of metal jet emitted during MPW was investigated and analysed. Leak testing revealed a leak rate better than 5 × 10−9 std-cc sec−1 He.
Literatur
1.
Zurück zum Zitat Bassoli E, Sola A, Mattia Celesti M, Calcagnile S, Cavallini C (2018) Development of laser-based powder bed fusion process parameters and scanning strategy for new metal alloy grades: a holistic method formulation. Materials 11(12):2356 CrossRef Bassoli E, Sola A, Mattia Celesti M, Calcagnile S, Cavallini C (2018) Development of laser-based powder bed fusion process parameters and scanning strategy for new metal alloy grades: a holistic method formulation. Materials 11(12):2356 CrossRef
2.
Zurück zum Zitat Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61(5):315–360 CrossRef Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61(5):315–360 CrossRef
3.
Zurück zum Zitat Bandyopadhyay A, Traxel KD (2018) Invited review article: metal-additive manufacturing—modeling strategies for application-optimized designs. Addit Manuf 22:758–774 CrossRef Bandyopadhyay A, Traxel KD (2018) Invited review article: metal-additive manufacturing—modeling strategies for application-optimized designs. Addit Manuf 22:758–774 CrossRef
4.
Zurück zum Zitat Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compo B Eng 143:172–196 CrossRef Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compo B Eng 143:172–196 CrossRef
6.
Zurück zum Zitat Reiher T, Lindemann C, Jahnke U, Deppe G, Koch R (2017) Holistic approach for industrializing AM technology: from part selection to test and verification. Prog Addit Manuf 2(1–2):43–55 CrossRef Reiher T, Lindemann C, Jahnke U, Deppe G, Koch R (2017) Holistic approach for industrializing AM technology: from part selection to test and verification. Prog Addit Manuf 2(1–2):43–55 CrossRef
8.
Zurück zum Zitat Nahmany M, Rosenthal I, Benishti I, Frage N, Stern A (2015) Electron beam welding of AlSi10Mg workpieces produced by selected laser melting additive manufacturing technology. Addit Manuf 8:63–70 CrossRef Nahmany M, Rosenthal I, Benishti I, Frage N, Stern A (2015) Electron beam welding of AlSi10Mg workpieces produced by selected laser melting additive manufacturing technology. Addit Manuf 8:63–70 CrossRef
9.
Zurück zum Zitat Nahmany M, Stern A, Aghion E, Frage N (2017) Structural properties of EB-welded AlSi10Mg thin-walled pressure vessels produced by AM-SLM technology. J Mater Eng Perform 26(10):4813–4821 CrossRef Nahmany M, Stern A, Aghion E, Frage N (2017) Structural properties of EB-welded AlSi10Mg thin-walled pressure vessels produced by AM-SLM technology. J Mater Eng Perform 26(10):4813–4821 CrossRef
10.
Zurück zum Zitat Scherillo F, Astarita A, Prisco U, Contaldi V, di Petta P, Langella A, Squillace A (2018) Friction stir welding of AlSi10Mg plates produced by selective laser melting. Metallogr Microstruct Anal 7(4):457–463 CrossRef Scherillo F, Astarita A, Prisco U, Contaldi V, di Petta P, Langella A, Squillace A (2018) Friction stir welding of AlSi10Mg plates produced by selective laser melting. Metallogr Microstruct Anal 7(4):457–463 CrossRef
12.
Zurück zum Zitat Takata N, Kodaira H, Sekizawa K, Suzuki A, Kobashi M (2017) Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments. Mater Sci Eng A 704:218–228 CrossRef Takata N, Kodaira H, Sekizawa K, Suzuki A, Kobashi M (2017) Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments. Mater Sci Eng A 704:218–228 CrossRef
13.
Zurück zum Zitat Fousová M, Dvorský D, Michalcová A, Vojtěch D (2018) Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures. Mater Charact 137(1):119–126 CrossRef Fousová M, Dvorský D, Michalcová A, Vojtěch D (2018) Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures. Mater Charact 137(1):119–126 CrossRef
14.
Zurück zum Zitat Davis JR (ed) (1993) ASM specialty handbook: aluminum and aluminum alloys. ASM International, Materials Park, pp 376–419 Davis JR (ed) (1993) ASM specialty handbook: aluminum and aluminum alloys. ASM International, Materials Park, pp 376–419
15.
Zurück zum Zitat Brooks JA, Dike JJ (1998) Modeling weld solidification cracking behavior in aluminum alloys-analysis of fracture initiation. In: Proceedings of 5th International Conference on International Trends in Welding Research, Pine Mountain, GA, ASM International, Materials Park, OH, pp 695–699 Brooks JA, Dike JJ (1998) Modeling weld solidification cracking behavior in aluminum alloys-analysis of fracture initiation. In: Proceedings of 5th International Conference on International Trends in Welding Research, Pine Mountain, GA, ASM International, Materials Park, OH, pp 695–699
16.
Zurück zum Zitat Chu Q, Bai R, Jian H, Lei Z, Hu N, Yan C (2018) Microstructure, texture and mechanical properties of 6061 aluminum laser beam welded joints. Mater Charact 137(1):269–276 CrossRef Chu Q, Bai R, Jian H, Lei Z, Hu N, Yan C (2018) Microstructure, texture and mechanical properties of 6061 aluminum laser beam welded joints. Mater Charact 137(1):269–276 CrossRef
17.
Zurück zum Zitat Shribman V, Williams JD, Bahrani AS, Crossland B (1968) The fundamentals of explosive welding. IIW Annual Assembly, Warsaw Shribman V, Williams JD, Bahrani AS, Crossland B (1968) The fundamentals of explosive welding. IIW Annual Assembly, Warsaw
18.
Zurück zum Zitat Ribeiro JB, Mendes R, Loureiro A (2014) Review of the weldability window concept and equations for explosive welding. J Phys Conf Ser 500(5):052038 CrossRef Ribeiro JB, Mendes R, Loureiro A (2014) Review of the weldability window concept and equations for explosive welding. J Phys Conf Ser 500(5):052038 CrossRef
19.
Zurück zum Zitat Stern A, Becher O, Nahmany M, Ashkenazi D, Shribman V (2015) Jet composition in magnetic pulse welding: Al–Al and Al–Mg couples. Weld J 94:257–284 Stern A, Becher O, Nahmany M, Ashkenazi D, Shribman V (2015) Jet composition in magnetic pulse welding: Al–Al and Al–Mg couples. Weld J 94:257–284
20.
Zurück zum Zitat Cuq-Lelandais JP, Ferreira S, Avrillaud G, Mazars G, Rauffet B (2014) Magnetic pulse welding: welding windows and high velocity impact simulations. In: Proceedings of the 6th international conference on high speed forming, vol 199206, Daejeon, Korea Cuq-Lelandais JP, Ferreira S, Avrillaud G, Mazars G, Rauffet B (2014) Magnetic pulse welding: welding windows and high velocity impact simulations. In: Proceedings of the 6th international conference on high speed forming, vol 199206, Daejeon, Korea
21.
Zurück zum Zitat Cuq-Lelandais JP, Avrillaud G, Ferreira S, Mazars G, Nottebaert A, Teilla G, Shribman V (2016) 3D impacts modeling of the magnetic pulse welding process and comparison to experimental data. In: 7th International Conference on High Speed Forming, pp 13–22 Cuq-Lelandais JP, Avrillaud G, Ferreira S, Mazars G, Nottebaert A, Teilla G, Shribman V (2016) 3D impacts modeling of the magnetic pulse welding process and comparison to experimental data. In: 7th International Conference on High Speed Forming, pp 13–22
22.
Zurück zum Zitat Shribman V, Stern A, Livshitz Y, Gafri O (2002) Magnetic pulse welding produces high-strength aluminum welds: welding aluminium. Weld J 81(4):33–37 Shribman V, Stern A, Livshitz Y, Gafri O (2002) Magnetic pulse welding produces high-strength aluminum welds: welding aluminium. Weld J 81(4):33–37
23.
Zurück zum Zitat Shribman V, Blakely M (2008) Benefits of the magnetic pulse process for welding dissimilar metals-this solid-state process allows the welding of dissimilar metals to help designers use lighter and stronger combinations of metals. Weld J 87(9):56 Shribman V, Blakely M (2008) Benefits of the magnetic pulse process for welding dissimilar metals-this solid-state process allows the welding of dissimilar metals to help designers use lighter and stronger combinations of metals. Weld J 87(9):56
24.
Zurück zum Zitat Ben-Artzy A, Stern A, Frage N, Shribman V, Sadot O (2010) Wave formation mechanism in magnetic pulse welding. Int J Impact Eng 37(4):397–404 CrossRef Ben-Artzy A, Stern A, Frage N, Shribman V, Sadot O (2010) Wave formation mechanism in magnetic pulse welding. Int J Impact Eng 37(4):397–404 CrossRef
25.
Zurück zum Zitat Zhang Y, Babu SS, Prothe C, Blakely M, Kwasegroch J, LaHa M, Daehn GS (2011) Application of high velocity impact welding at varied different length scales. J Mater Process Technol 211(5):944–952 CrossRef Zhang Y, Babu SS, Prothe C, Blakely M, Kwasegroch J, LaHa M, Daehn GS (2011) Application of high velocity impact welding at varied different length scales. J Mater Process Technol 211(5):944–952 CrossRef
26.
Zurück zum Zitat Stern A, Shribman V, Ben-Artzy A, Aizenshtein M (2014) Interface phenomena and bonding mechanism in magnetic pulse welding. J Mater Eng Perform 23(10):3449–3458 CrossRef Stern A, Shribman V, Ben-Artzy A, Aizenshtein M (2014) Interface phenomena and bonding mechanism in magnetic pulse welding. J Mater Eng Perform 23(10):3449–3458 CrossRef
27.
Zurück zum Zitat Bellmann J, Lueg-Althoff J, Schulze S, Gies S, Beyer E, Tekkaya AE (2017) Measurement of collision conditions in magnetic pulse welding processes. J Phys Sci Appl 7(4):1–10 Bellmann J, Lueg-Althoff J, Schulze S, Gies S, Beyer E, Tekkaya AE (2017) Measurement of collision conditions in magnetic pulse welding processes. J Phys Sci Appl 7(4):1–10
28.
Zurück zum Zitat Lueg-Althoff J, Bellmann J, Gies S, Schulze S, Tekkaya AE, Beyer E (2018) Influence of the flyer kinetics on magnetic pulse welding of tubes. J Mater Process Technol 262:189–203 CrossRef Lueg-Althoff J, Bellmann J, Gies S, Schulze S, Tekkaya AE, Beyer E (2018) Influence of the flyer kinetics on magnetic pulse welding of tubes. J Mater Process Technol 262:189–203 CrossRef
30.
Zurück zum Zitat Psyk V, Scheffler C, Linnemann M, Landgrebe D (2017) Process analysis for magnetic pulse welding of similar and dissimilar material sheet metal joints. Proc Eng 207:353–358 CrossRef Psyk V, Scheffler C, Linnemann M, Landgrebe D (2017) Process analysis for magnetic pulse welding of similar and dissimilar material sheet metal joints. Proc Eng 207:353–358 CrossRef
31.
Zurück zum Zitat Rosenthal I, Shneck R, Stern A (2018) Heat treatment effect on the mechanical properties and fracture mechanism in AlSi10Mg fabricated by additive manufacturing selective laser melting process. Mater Sci Eng A 729:310–322 CrossRef Rosenthal I, Shneck R, Stern A (2018) Heat treatment effect on the mechanical properties and fracture mechanism in AlSi10Mg fabricated by additive manufacturing selective laser melting process. Mater Sci Eng A 729:310–322 CrossRef
32.
Zurück zum Zitat Pereira D, Oliveira JP, Pardal T, Miranda RM, Santos TG (2018) Magnetic pulse welding: machine optimisation for aluminium tubular joints production. Sci Technol Weld Join 23(2):172–179 CrossRef Pereira D, Oliveira JP, Pardal T, Miranda RM, Santos TG (2018) Magnetic pulse welding: machine optimisation for aluminium tubular joints production. Sci Technol Weld Join 23(2):172–179 CrossRef
37.
Zurück zum Zitat Rottländer H, Umrath W, Voss G (2016) Fundamentals of leak detection. In: Leybold GMBH (ed) Cat. No. 199 79_VA.02, Cologne, pp 1–49 Rottländer H, Umrath W, Voss G (2016) Fundamentals of leak detection. In: Leybold GMBH (ed) Cat. No. 199 79_VA.02, Cologne, pp 1–49
Metadaten
Titel
MP Welding of dissimilar materials: AM laser powder-bed fusion AlSi10Mg to wrought AA6060-T6
verfasst von
V. Shribman
M. Nahmany
S. Levi
O. Atiya
D. Ashkenazi
A. Stern
Publikationsdatum
17.10.2019
Verlag
Springer International Publishing
Erschienen in
Progress in Additive Manufacturing / Ausgabe 2/2020
Print ISSN: 2363-9512
Elektronische ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-019-00100-x

Weitere Artikel der Ausgabe 2/2020

Progress in Additive Manufacturing 2/2020 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.