Skip to main content

2022 | OriginalPaper | Buchkapitel

Multi-agent Simulation for AI Behaviour Discovery in Operations Research

verfasst von : Michael Papasimeon, Lyndon Benke

Erschienen in: Multi-Agent-Based Simulation XXII

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multi-agent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0. We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
This is a simplified view of the situation, as one can consider higher order features such as turn rates and other time derivatives of the basic state space variables.
 
Literatur
1.
Zurück zum Zitat Austin, F., Carbone, G., Lewis, M.: Automated maneuvering decisions for air-to-air combat. In: In Proceedings of the Military Computing Conference. Anaheim, California, May 1987 Austin, F., Carbone, G., Lewis, M.: Automated maneuvering decisions for air-to-air combat. In: In Proceedings of the Military Computing Conference. Anaheim, California, May 1987
2.
Zurück zum Zitat Burgin, G.H., Sidor, L.B.: Rule-Based Air Combat Simulation. Technical Report, Contractor Report 4160, National Aeronautics and Space Administration (NASA) (1988) Burgin, G.H., Sidor, L.B.: Rule-Based Air Combat Simulation. Technical Report, Contractor Report 4160, National Aeronautics and Space Administration (NASA) (1988)
5.
Zurück zum Zitat Heinze, C., Papasimeon, M., Goss, S., Cross, M., Connell, R.: Simulating fighter pilots. In: Pěchouček, M., Thompson, S.G., Voos, H. (eds.) Defence Industry Applications of Autonomous Agents and Multi-Agent Systems. WSSAT, pp. 113–130. Birkhäuser Basel, Basel (2008). http://dx.doi.org/10.1007/978-3-7643-8571-2_7 Heinze, C., Papasimeon, M., Goss, S., Cross, M., Connell, R.: Simulating fighter pilots. In: Pěchouček, M., Thompson, S.G., Voos, H. (eds.) Defence Industry Applications of Autonomous Agents and Multi-Agent Systems. WSSAT, pp. 113–130. Birkhäuser Basel, Basel (2008). http://​dx.​doi.​org/​10.​1007/​978-3-7643-8571-2_​7
6.
Zurück zum Zitat Hossam, M., Le, T., Huynh, V., Papasimeon, M., Phung, D.Q.: OptiGAN: generative adversarial networks for goal optimized sequence generation. In: International Joint Conference on Neural Networks (IJCNN). Glasgow, Scotland, UK, July 2020 Hossam, M., Le, T., Huynh, V., Papasimeon, M., Phung, D.Q.: OptiGAN: generative adversarial networks for goal optimized sequence generation. In: International Joint Conference on Neural Networks (IJCNN). Glasgow, Scotland, UK, July 2020
8.
Zurück zum Zitat Jones, R.M., Wray, R., van Lent, M., Laird, J.E.: Planning in the Tactical Air Domain. Technical Report, aAAI Technical Report FS-94-01, AAAI (1994) Jones, R.M., Wray, R., van Lent, M., Laird, J.E.: Planning in the Tactical Air Domain. Technical Report, aAAI Technical Report FS-94-01, AAAI (1994)
10.
Zurück zum Zitat Kurniawan, B., Vamplew, P., Papasimeon, M., Dazeley, R., Foale, C.: An empirical study of reward structures for actor-critic reinforcement learning in air combat manoeuvring simulation. In: Liu, J., Bailey, J. (eds.) AI 2019. LNCS (LNAI), vol. 11919, pp. 54–65. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35288-2_5CrossRef Kurniawan, B., Vamplew, P., Papasimeon, M., Dazeley, R., Foale, C.: An empirical study of reward structures for actor-critic reinforcement learning in air combat manoeuvring simulation. In: Liu, J., Bailey, J. (eds.) AI 2019. LNCS (LNAI), vol. 11919, pp. 54–65. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-35288-2_​5CrossRef
11.
Zurück zum Zitat Kurniawan, B., Vamplew, P., Papasimeon, M., Dazeley, R., Foale, C.: Discrete-to-Deep supervised policy learning: an effective training method for neural reinforcement learning. In: ALA 2020: Adaptive Learning Agents Workshop at AAMAS 2020. Auckland, New Zealand (2020) Kurniawan, B., Vamplew, P., Papasimeon, M., Dazeley, R., Foale, C.: Discrete-to-Deep supervised policy learning: an effective training method for neural reinforcement learning. In: ALA 2020: Adaptive Learning Agents Workshop at AAMAS 2020. Auckland, New Zealand (2020)
13.
Zurück zum Zitat Lipovetzky, N., Geffner, H.: Width and serialization of classical planning problems. In: ECAI, pp. 540–545 (2012) Lipovetzky, N., Geffner, H.: Width and serialization of classical planning problems. In: ECAI, pp. 540–545 (2012)
14.
15.
Zurück zum Zitat Masek, M., Lam, C.P., Benke, L., Kelly, L., Papasimeon, M.: Discovering emergent agent behaviour with evolutionary finite state machines. In: Miller, T., Oren, N., Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao Son, T. (eds.) PRIMA 2018. LNCS (LNAI), vol. 11224, pp. 19–34. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03098-8_2CrossRef Masek, M., Lam, C.P., Benke, L., Kelly, L., Papasimeon, M.: Discovering emergent agent behaviour with evolutionary finite state machines. In: Miller, T., Oren, N., Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao Son, T. (eds.) PRIMA 2018. LNCS (LNAI), vol. 11224, pp. 19–34. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-030-03098-8_​2CrossRef
16.
Zurück zum Zitat Masek, M., Lam, C.P., Kelly, L., Benke, L., Papasimeon, M.: A genetic programming framework for novel behaviour discovery in air combat scenarios. In: Ernst, A.T., Dunstall, S., García-Flores, R., Grobler, M., Marlow, D. (eds.) Data and Decision Sciences in Action 2. LNMIE, pp. 263–277. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-60135-5_19CrossRef Masek, M., Lam, C.P., Kelly, L., Benke, L., Papasimeon, M.: A genetic programming framework for novel behaviour discovery in air combat scenarios. In: Ernst, A.T., Dunstall, S., García-Flores, R., Grobler, M., Marlow, D. (eds.) Data and Decision Sciences in Action 2. LNMIE, pp. 263–277. Springer, Cham (2021). https://​doi.​org/​10.​1007/​978-3-030-60135-5_​19CrossRef
17.
Zurück zum Zitat McGrew, J.S., How, J.P.: Air combat strategy using approximate dynamic programming. J. Guidance Control Dyn. 33, 1641–1654 (2010)CrossRef McGrew, J.S., How, J.P.: Air combat strategy using approximate dynamic programming. J. Guidance Control Dyn. 33, 1641–1654 (2010)CrossRef
18.
Zurück zum Zitat Papasimeon, M., Pearce, A., Goss, S.: The human agent virtual environment. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems. AAMAS 2007. Association for Computing Machinery, New York, NY, USA (2007). https://doi.org/10.1145/1329125.1329463 Papasimeon, M., Pearce, A., Goss, S.: The human agent virtual environment. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems. AAMAS 2007. Association for Computing Machinery, New York, NY, USA (2007). https://​doi.​org/​10.​1145/​1329125.​1329463
19.
Zurück zum Zitat Park, H., Lee, B.Y., Tahk, M.J., Yoo, D.W.: Differential game based air combat maneuver generation using scoring function matrix. Int. J. Aeronaut. Space Sci. 17(2), 204–213 (2016)CrossRef Park, H., Lee, B.Y., Tahk, M.J., Yoo, D.W.: Differential game based air combat maneuver generation using scoring function matrix. Int. J. Aeronaut. Space Sci. 17(2), 204–213 (2016)CrossRef
20.
Zurück zum Zitat Pérez, F., Granger, B.E.: IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9(3), 21–29 (2007)CrossRef Pérez, F., Granger, B.E.: IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9(3), 21–29 (2007)CrossRef
21.
Zurück zum Zitat Ramirez, M., Papasimeon, M., Benke, L., Lipovetzky, N., Miller, T., Pearce, A.R.: Real-Time UAV maneuvering via automated planning in simulations. In: 26th International Joint Conference on Artificial Intelligence (IJCAI), pp. 5243–5245. Melbourne, Australia, August 2017 Ramirez, M., Papasimeon, M., Benke, L., Lipovetzky, N., Miller, T., Pearce, A.R.: Real-Time UAV maneuvering via automated planning in simulations. In: 26th International Joint Conference on Artificial Intelligence (IJCAI), pp. 5243–5245. Melbourne, Australia, August 2017
22.
Zurück zum Zitat Ramirez, M., et al.: Integrated hybrid planning and programmed control for real time UAV maneuvering. In: 17th Int. Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1318–1326. Stockholm, Sweden, July 2018 Ramirez, M., et al.: Integrated hybrid planning and programmed control for real time UAV maneuvering. In: 17th Int. Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1318–1326. Stockholm, Sweden, July 2018
23.
Zurück zum Zitat Shaw, R.L.: Fighter Combat: Tactics and Maneuvering. Naval Institute Press, Annapolis (1985) Shaw, R.L.: Fighter Combat: Tactics and Maneuvering. Naval Institute Press, Annapolis (1985)
24.
Zurück zum Zitat Smith, R., Dike, B., Ravichandran, B., El-Fallah, A., Mehra, K.: Discovering novel fighter combat maneuvers: simulating test pilot creativity. In: Bentley, P.J., Corne, D.W. (eds.) Creative Evolutionary Systems, p. 467 - VIII. The Morgan Kaufmann Series in Artificial Intelligence, Morgan Kaufmann, San Francisco (2002). https://doi.org/10.1016/B978-155860673-9/50059-8 Smith, R., Dike, B., Ravichandran, B., El-Fallah, A., Mehra, K.: Discovering novel fighter combat maneuvers: simulating test pilot creativity. In: Bentley, P.J., Corne, D.W. (eds.) Creative Evolutionary Systems, p. 467 - VIII. The Morgan Kaufmann Series in Artificial Intelligence, Morgan Kaufmann, San Francisco (2002). https://​doi.​org/​10.​1016/​B978-155860673-9/​50059-8
25.
Zurück zum Zitat Tidhar, G., Heinze, C., Selvestrel, M.: Flying together: modelling air mission teams. Appl. Intell. 8(3), 195–218 (1998)CrossRef Tidhar, G., Heinze, C., Selvestrel, M.: Flying together: modelling air mission teams. Appl. Intell. 8(3), 195–218 (1998)CrossRef
26.
Zurück zum Zitat Toubman, A.: Calculated Moves: Generating Air Combat Behaviour. Ph.D. thesis, Leiden University, The Netherlands (2020) Toubman, A.: Calculated Moves: Generating Air Combat Behaviour. Ph.D. thesis, Leiden University, The Netherlands (2020)
27.
Zurück zum Zitat Vered, M., Kaminka, G.A.: Heuristic online goal recognition in continuous domains. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI-17), pp. 4447–4454. Melbourne, Australia (2017) Vered, M., Kaminka, G.A.: Heuristic online goal recognition in continuous domains. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI-17), pp. 4447–4454. Melbourne, Australia (2017)
Metadaten
Titel
Multi-agent Simulation for AI Behaviour Discovery in Operations Research
verfasst von
Michael Papasimeon
Lyndon Benke
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-94548-0_6

Premium Partner