Skip to main content

2024 | OriginalPaper | Buchkapitel

3. Multi-feature Fusion: Graph Neural Network and CNN Combining for Hyperspectral Image Classification

verfasst von : Yao Ding, Zhili Zhang, Haojie Hu, Fang He, Shuli Cheng, Yijun Zhang

Erschienen in: Graph Neural Network for Feature Extraction and Classification of Hyperspectral Remote Sensing Images

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hyperspectral imagery collected from satellite or airborne comprises hundreds of contiguous bands and contains abundant spectral-spatial information. Due to the advantages of HSI, land-cover categories can be distinguished at the pixel level.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Ding, X. Zhao, Z. Zhang, W. Cai, N. Yang, Graph sample and aggregate-attention network for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022) Y. Ding, X. Zhao, Z. Zhang, W. Cai, N. Yang, Graph sample and aggregate-attention network for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)
2.
Zurück zum Zitat D. Hong, W. He, N. Yokoya, J. Yao, L. Gao, L. Zhang, J. Chanussot, X. Zhu, Interpretable hyperspectral artificial intelligence: when nonconvex modeling meets hyperspectral remote sensing. IEEE Geosci. Remote Sens. Magaz. 9(2), 52–87 (2021)CrossRef D. Hong, W. He, N. Yokoya, J. Yao, L. Gao, L. Zhang, J. Chanussot, X. Zhu, Interpretable hyperspectral artificial intelligence: when nonconvex modeling meets hyperspectral remote sensing. IEEE Geosci. Remote Sens. Magaz. 9(2), 52–87 (2021)CrossRef
3.
Zurück zum Zitat D. Yao, Z. Zhi-li, Z. Xiao-feng, C. Wei, H. Fang, C. Yao-ming, Deep hybrid: multi-graph neural network collaboration for hyperspectral image classification. Def. Technol. (2022) D. Yao, Z. Zhi-li, Z. Xiao-feng, C. Wei, H. Fang, C. Yao-ming, Deep hybrid: multi-graph neural network collaboration for hyperspectral image classification. Def. Technol. (2022)
4.
Zurück zum Zitat D. Hong, L. Gao, N. Yokoya, J. Yao, J. Chanussot, Q. Du, B. Zhang, More diverse means better: multimodal deep learning meets remote-sensing imagery classification. IEEE Trans. Geosci. Remote Sens. 59(5), 4340–4354 (2020)CrossRef D. Hong, L. Gao, N. Yokoya, J. Yao, J. Chanussot, Q. Du, B. Zhang, More diverse means better: multimodal deep learning meets remote-sensing imagery classification. IEEE Trans. Geosci. Remote Sens. 59(5), 4340–4354 (2020)CrossRef
5.
Zurück zum Zitat P. Zhong, Z. Gong, J. Shan, Multiple instance learning for multiple diverse hyperspectral target characterizations. IEEE Trans. Neural Netw. Learn. Syst. 31(1), 246–258 (2019)CrossRef P. Zhong, Z. Gong, J. Shan, Multiple instance learning for multiple diverse hyperspectral target characterizations. IEEE Trans. Neural Netw. Learn. Syst. 31(1), 246–258 (2019)CrossRef
6.
Zurück zum Zitat S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, J.A. Benediktsson, Deep learning for hyperspectral image classification: an overview. IEEE Trans. Geosci. Remote Sens. 57(9), 6690–6709 (2019)CrossRef S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, J.A. Benediktsson, Deep learning for hyperspectral image classification: an overview. IEEE Trans. Geosci. Remote Sens. 57(9), 6690–6709 (2019)CrossRef
7.
Zurück zum Zitat D. Hong, N. Yokoya, J. Chanussot, X.X. Zhu, CoSpace: Common subspace learning from hyperspectral-multispectral correspondences. IEEE Trans. Geosci. Remote Sens. 57(7), 4349–4359 (2019)CrossRef D. Hong, N. Yokoya, J. Chanussot, X.X. Zhu, CoSpace: Common subspace learning from hyperspectral-multispectral correspondences. IEEE Trans. Geosci. Remote Sens. 57(7), 4349–4359 (2019)CrossRef
8.
Zurück zum Zitat Z.Z.Y. Ding, X. Zhao, D. Hong, W. Li, W. Cai, Y. Zhan, AF2GNN: graph convolution with adaptive filters and aggregator fusion for hyperspectral image classification. Inform. Sci. (2022) Z.Z.Y. Ding, X. Zhao, D. Hong, W. Li, W. Cai, Y. Zhan, AF2GNN: graph convolution with adaptive filters and aggregator fusion for hyperspectral image classification. Inform. Sci. (2022)
9.
Zurück zum Zitat Y. Cai, M. Zeng, Z. Cai, X. Liu, Z. Zhang, Graph regularized residual subspace clustering network for hyperspectral image clustering. Inform. Sci. 578, 85–101 (2021)MathSciNetCrossRef Y. Cai, M. Zeng, Z. Cai, X. Liu, Z. Zhang, Graph regularized residual subspace clustering network for hyperspectral image clustering. Inform. Sci. 578, 85–101 (2021)MathSciNetCrossRef
10.
Zurück zum Zitat Y. Ding, X. Zhao, Z. Zhang, W. Cai, N. Yang, Y. Zhan, Semi-supervised locality preserving dense graph neural network with ARMA filters and context-aware learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. (2021) Y. Ding, X. Zhao, Z. Zhang, W. Cai, N. Yang, Y. Zhan, Semi-supervised locality preserving dense graph neural network with ARMA filters and context-aware learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. (2021)
11.
Zurück zum Zitat J. Bai, A. Yuan, Z. Xiao, H. Zhou, D. Wang, H. Jiang, L. Jiao, Class incremental learning with few-shots based on linear programming for hyperspectral image classification. IEEE Trans. Cybern. (2020) J. Bai, A. Yuan, Z. Xiao, H. Zhou, D. Wang, H. Jiang, L. Jiao, Class incremental learning with few-shots based on linear programming for hyperspectral image classification. IEEE Trans. Cybern. (2020)
12.
Zurück zum Zitat J. Peng, L. Li, Y.Y. Tang, Maximum likelihood estimation-based joint sparse representation for the classification of hyperspectral remote sensing images. IEEE Trans. Neural Netw. Learn. Syst. 30(6), 1790–1802 (2018)MathSciNetCrossRef J. Peng, L. Li, Y.Y. Tang, Maximum likelihood estimation-based joint sparse representation for the classification of hyperspectral remote sensing images. IEEE Trans. Neural Netw. Learn. Syst. 30(6), 1790–1802 (2018)MathSciNetCrossRef
13.
Zurück zum Zitat Y. Cai, Z. Zhang, Z. Cai, X. Liu, X. Jiang, Q. Yan, Graph convolutional subspace clustering: a robust subspace clustering framework for hyperspectral image. IEEE Trans. Geosci. Remote Sens. 59(5), 4191–4202 (2020)CrossRef Y. Cai, Z. Zhang, Z. Cai, X. Liu, X. Jiang, Q. Yan, Graph convolutional subspace clustering: a robust subspace clustering framework for hyperspectral image. IEEE Trans. Geosci. Remote Sens. 59(5), 4191–4202 (2020)CrossRef
14.
Zurück zum Zitat J. Bai, S. Huang, Z. Xiao, X. Li, Y. Zhu, A.C. Regan, L. Jiao, Few-shot hyperspectral image classification based on adaptive subspaces and feature transformation. IEEE Trans. Geosci. Remote Sens. 60, 1–17 (2022) J. Bai, S. Huang, Z. Xiao, X. Li, Y. Zhu, A.C. Regan, L. Jiao, Few-shot hyperspectral image classification based on adaptive subspaces and feature transformation. IEEE Trans. Geosci. Remote Sens. 60, 1–17 (2022)
15.
Zurück zum Zitat C. Chen, W. Li, H. Su, K. Liu, Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sens. 6(6), 5795–5814 (2014)CrossRef C. Chen, W. Li, H. Su, K. Liu, Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sens. 6(6), 5795–5814 (2014)CrossRef
16.
Zurück zum Zitat J. Li, J.M. Bioucas-Dias, A. Plaza, Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 48(11), 4085–4098 (2010) J. Li, J.M. Bioucas-Dias, A. Plaza, Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 48(11), 4085–4098 (2010)
17.
Zurück zum Zitat C. Bo, H. Lu, D. Wang, Hyperspectral image classification via JCR and SVM models with decision fusion. IEEE Geosci. Remote Sens. Lett. 13(2), 177–181 (2015) C. Bo, H. Lu, D. Wang, Hyperspectral image classification via JCR and SVM models with decision fusion. IEEE Geosci. Remote Sens. Lett. 13(2), 177–181 (2015)
18.
Zurück zum Zitat Y. Cai, X. Liu, Z. Cai, BS-Nets: an end-to-end framework for band selection of hyperspectral image. IEEE Trans. Geosci. Remote Sens. 58(3), 1969–1984 (2019)CrossRef Y. Cai, X. Liu, Z. Cai, BS-Nets: an end-to-end framework for band selection of hyperspectral image. IEEE Trans. Geosci. Remote Sens. 58(3), 1969–1984 (2019)CrossRef
19.
Zurück zum Zitat M. Fauvel, J.A. Benediktsson, J. Chanussot, J.R. Sveinsson, Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(11), 3804–3814 (2008)CrossRef M. Fauvel, J.A. Benediktsson, J. Chanussot, J.R. Sveinsson, Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(11), 3804–3814 (2008)CrossRef
20.
Zurück zum Zitat L. Fang, N. He, S. Li, P. Ghamisi, J.A. Benediktsson, Extinction profiles fusion for hyperspectral images classification. IEEE Trans. Geosci. Remote Sens. 56(3), 1803–1815 (2017)CrossRef L. Fang, N. He, S. Li, P. Ghamisi, J.A. Benediktsson, Extinction profiles fusion for hyperspectral images classification. IEEE Trans. Geosci. Remote Sens. 56(3), 1803–1815 (2017)CrossRef
21.
Zurück zum Zitat S. Jia, L. Shen, Q. Li, Gabor feature-based collaborative representation for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 53(2), 1118–1129 (2014) S. Jia, L. Shen, Q. Li, Gabor feature-based collaborative representation for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 53(2), 1118–1129 (2014)
22.
Zurück zum Zitat Z. Tang, M. Ling, H. Yao, Z. Qian, X. Zhang, J. Zhang, S. Xu, Robust image hashing via random Gabor filtering and DWT. Comput. Mater. Cont. 55(2), 331–344 (2018) Z. Tang, M. Ling, H. Yao, Z. Qian, X. Zhang, J. Zhang, S. Xu, Robust image hashing via random Gabor filtering and DWT. Comput. Mater. Cont. 55(2), 331–344 (2018)
23.
Zurück zum Zitat P. Quesada-Barriuso, F. Argüello, D.B. Heras, Spectral–spatial classification of hyperspectral images using wavelets and extended morphological profiles. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 7(4), 1177–1185 (2014)CrossRef P. Quesada-Barriuso, F. Argüello, D.B. Heras, Spectral–spatial classification of hyperspectral images using wavelets and extended morphological profiles. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 7(4), 1177–1185 (2014)CrossRef
24.
Zurück zum Zitat J.A. Benediktsson, J.A. Palmason, J.R. Sveinsson, Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)CrossRef J.A. Benediktsson, J.A. Palmason, J.R. Sveinsson, Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)CrossRef
25.
Zurück zum Zitat X. Kang, S. Li, J.A. Benediktsson, Spectral–spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans. Geosci. Remote Sens. 52(5), 2666–2677 (2013)CrossRef X. Kang, S. Li, J.A. Benediktsson, Spectral–spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans. Geosci. Remote Sens. 52(5), 2666–2677 (2013)CrossRef
26.
Zurück zum Zitat X.X. Zhu, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, F. Fraundorfer, Deep learning in remote sensing: a comprehensive review and list of resources. IEEE Geosci. Remote Sens. Magaz. 5(4), 8–36 (2017)CrossRef X.X. Zhu, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, F. Fraundorfer, Deep learning in remote sensing: a comprehensive review and list of resources. IEEE Geosci. Remote Sens. Magaz. 5(4), 8–36 (2017)CrossRef
27.
Zurück zum Zitat L. Mou, P. Ghamisi, X.X. Zhu, Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3639–3655 (2017)CrossRef L. Mou, P. Ghamisi, X.X. Zhu, Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3639–3655 (2017)CrossRef
28.
Zurück zum Zitat Y. Chen, Z. Lin, X. Zhao, G. Wang, Y. Gu, Deep learning-based classification of hyperspectral data. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 7(6), 2094–2107 (2014)CrossRef Y. Chen, Z. Lin, X. Zhao, G. Wang, Y. Gu, Deep learning-based classification of hyperspectral data. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 7(6), 2094–2107 (2014)CrossRef
29.
Zurück zum Zitat K. Makantasis, K. Karantzalos, A. Doulamis, N. Doulamis, Deep supervised learning for hyperspectral data classification through convolutional neural networks, in Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 2015), pp. 4959–4962 K. Makantasis, K. Karantzalos, A. Doulamis, N. Doulamis, Deep supervised learning for hyperspectral data classification through convolutional neural networks, in Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 2015), pp. 4959–4962
30.
Zurück zum Zitat S.K. Roy, G. Krishna, S.R. Dubey, B.B. Chaudhuri, HybridSN: exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 17(2), 277–281 (2019)CrossRef S.K. Roy, G. Krishna, S.R. Dubey, B.B. Chaudhuri, HybridSN: exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 17(2), 277–281 (2019)CrossRef
31.
Zurück zum Zitat W. Hu, Y.Y. Huang, L. Wei, F. Zhang, H.C. Li, Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 1–12 (2015)CrossRef W. Hu, Y.Y. Huang, L. Wei, F. Zhang, H.C. Li, Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 1–12 (2015)CrossRef
32.
Zurück zum Zitat Y. Li, H. Zhang, Q. Shen, Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 9(1), 67 (2017)CrossRef Y. Li, H. Zhang, Q. Shen, Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 9(1), 67 (2017)CrossRef
33.
Zurück zum Zitat J. Yang, Y.-Q. Zhao, J.C.-W. Chan, Learning and transferring deep joint spectral–spatial features for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 55(8), 4729–4742 (2017)CrossRef J. Yang, Y.-Q. Zhao, J.C.-W. Chan, Learning and transferring deep joint spectral–spatial features for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 55(8), 4729–4742 (2017)CrossRef
34.
Zurück zum Zitat C. Chen, J.-J. Zhang, C.-H. Zheng, Q. Yan, L.-N. Xun, Classification of hyperspectral data using a multi-channel convolutional neural network, in International Conference on Intelligent Computing (Springer, 2018), pp. 81–92 C. Chen, J.-J. Zhang, C.-H. Zheng, Q. Yan, L.-N. Xun, Classification of hyperspectral data using a multi-channel convolutional neural network, in International Conference on Intelligent Computing (Springer, 2018), pp. 81–92
35.
Zurück zum Zitat J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 3431–3440 J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 3431–3440
36.
Zurück zum Zitat L. Zhu, Y. Chen, P. Ghamisi, J.A. Benediktsson, Generative adversarial networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 56(9), 5046–5063 (2018)CrossRef L. Zhu, Y. Chen, P. Ghamisi, J.A. Benediktsson, Generative adversarial networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 56(9), 5046–5063 (2018)CrossRef
37.
Zurück zum Zitat H. Hu, M. Yao, F. He, F. Zhang, Graph neural network via edge convolution for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022) H. Hu, M. Yao, F. He, F. Zhang, Graph neural network via edge convolution for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)
38.
Zurück zum Zitat M.W.T.N. Kipf, Semi-Supervised Classification with Graph Convolutional Networks (2016) M.W.T.N. Kipf, Semi-Supervised Classification with Graph Convolutional Networks (2016)
39.
Zurück zum Zitat A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, Y.Y. Tang, Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 16(2), 241–245 (2018)CrossRef A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, Y.Y. Tang, Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 16(2), 241–245 (2018)CrossRef
40.
Zurück zum Zitat J. Bai, B. Ding, Z. Xiao, L. Jiao, H. Chen, A.C. Regan, Hyperspectral image classification based on deep attention graph convolutional network. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2021) J. Bai, B. Ding, Z. Xiao, L. Jiao, H. Chen, A.C. Regan, Hyperspectral image classification based on deep attention graph convolutional network. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2021)
41.
Zurück zum Zitat D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, J. Chanussot, Graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(7), 5966–5978 (2020)CrossRef D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, J. Chanussot, Graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(7), 5966–5978 (2020)CrossRef
42.
Zurück zum Zitat S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, J. Yang, Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(5), 3162–3177 (2019)CrossRef S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, J. Yang, Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(5), 3162–3177 (2019)CrossRef
43.
Zurück zum Zitat Y. Ding, X. Zhao, Z. Zhang, W. Cai, N. Yang, Multiscale graph sample and aggregate network with context-aware learning for hyperspectral image classification. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 4561–4572 (2021)CrossRef Y. Ding, X. Zhao, Z. Zhang, W. Cai, N. Yang, Multiscale graph sample and aggregate network with context-aware learning for hyperspectral image classification. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 4561–4572 (2021)CrossRef
44.
Zurück zum Zitat A.J. Izenman, Linear discriminant analysis, in Modern Multivariate Statistical Techniques (Springer, 2013), pp. 237–280 A.J. Izenman, Linear discriminant analysis, in Modern Multivariate Statistical Techniques (Springer, 2013), pp. 237–280
45.
Zurück zum Zitat R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRef R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRef
46.
Zurück zum Zitat T. Dozat, Incorporating Nesterov Momentum into Adam (2016) T. Dozat, Incorporating Nesterov Momentum into Adam (2016)
47.
Zurück zum Zitat K. Djerriri, A. Safia, R. Adjoudj, M.S. Karoui, Improving hyperspectral image classification by combining spectral and multiband compact texture features, in IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2019), pp. 465–468 K. Djerriri, A. Safia, R. Adjoudj, M.S. Karoui, Improving hyperspectral image classification by combining spectral and multiband compact texture features, in IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2019), pp. 465–468
48.
Zurück zum Zitat W. Li, G. Wu, F. Zhang, Q. Du, Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote Sens. 55(2), 844–853 (2016)CrossRef W. Li, G. Wu, F. Zhang, Q. Du, Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote Sens. 55(2), 844–853 (2016)CrossRef
49.
Zurück zum Zitat C. Zhang, G. Li, S. Du, Multi-scale dense networks for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 57(11), 9201–9222 (2019)CrossRef C. Zhang, G. Li, S. Du, Multi-scale dense networks for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 57(11), 9201–9222 (2019)CrossRef
50.
Zurück zum Zitat M. Zhang, W. Li, Q. Du, Diverse region-based CNN for hyperspectral image classification. IEEE Trans. Image Process. 27(6), 2623–2634 (2018)MathSciNetCrossRef M. Zhang, W. Li, Q. Du, Diverse region-based CNN for hyperspectral image classification. IEEE Trans. Image Process. 27(6), 2623–2634 (2018)MathSciNetCrossRef
Metadaten
Titel
Multi-feature Fusion: Graph Neural Network and CNN Combining for Hyperspectral Image Classification
verfasst von
Yao Ding
Zhili Zhang
Haojie Hu
Fang He
Shuli Cheng
Yijun Zhang
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8009-9_3