Skip to main content
Erschienen in: Wireless Personal Communications 3/2020

19.05.2020

Multi-Featured and Fuzzy Based Dual Analysis Approach to Optimize the Subspace Clustering for Images

verfasst von: Kapil Juneja

Erschienen in: Wireless Personal Communications | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In unsupervised classification, the subspace clustering is gaining the scope for the categorization of the more comprehensive and random image pool. In this paper, the visual and appearance features of images are evaluated independently and jointly for optimizing the subspace clustering. The normalized-image is divided into smaller blocks and extracted the visual and textural features. Entropy, Homogeneity, structural, and Edge content Features are evaluated for each block. The fuzzy rules are applied to the individual features for conducting the distinct block-adaptive hierarchical clustering. In the second level, the feature subspace is generated for exclusive features and applied to the hierarchical subspace clustering over it. After getting the cluster-segments for each image-feature and feature-subspace, the second-level fuzzy–rules are applied to assign the weights to each block. In the final stage, the image pool is processed based on this weighted poling and distance for identifying the image category. This collaborative evaluation based map performed the active clustering over the image pool. The proposed method is applied to AR, Extended-Yale, USPS, and Coil-20 Datasets. The comparative evaluation is conducted against Accuracy, NMI, and CE parameters. The proposed framework outperformed the SSC, LRR, LSR1, LSR2, SMR methods by 5.59%, 16.89%, 6.29%, 6.29%, 4.89% and 3.39% in NMI computation for AR dataset. The significant reduction in CE was achieved by 9.07%, 15.67%, 6.77%, 8.47%, 4.47% against SSE, LRR, LSR1, LSR2, and SMR methods for AR dataset. For the Extended Yale dataset, the proposed framework outperformed the existing clustering methods with 78.08% NMI and 21.11% CE. A significant higher NMI of 86.37% and least CE of 7.13% is achieved in this proposed model. For the Coil-20 dataset, the proposed model achieved 91.19% NMI and 82.83% accuracy, which is significantly better than existing methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Taufik, A., Ahmad, S. S. S., & Khairuddin, N. F. E. (2017). Classification of landsat 8 satellite data using fuzzy c-means. International Conference on Machine Learning and Soft Computing, 1, 58–62. Taufik, A., Ahmad, S. S. S., & Khairuddin, N. F. E. (2017). Classification of landsat 8 satellite data using fuzzy c-means. International Conference on Machine Learning and Soft Computing, 1, 58–62.
2.
Zurück zum Zitat Lee, K.-C., Ho, J., & Kriegman, D. J. (2005). Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5), 684–698. Lee, K.-C., Ho, J., & Kriegman, D. J. (2005). Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5), 684–698.
3.
Zurück zum Zitat Zhu, Y., Ting, K. M., & Carman, M. J. (2018). Grouping points by shared subspaces for effective subspace clustering. Pattern Recognition, 83, 230–244. Zhu, Y., Ting, K. M., & Carman, M. J. (2018). Grouping points by shared subspaces for effective subspace clustering. Pattern Recognition, 83, 230–244.
4.
Zurück zum Zitat Huang, X., et al. (2014). DSKmeans: A new kmeans-type approach to discriminative subspace clustering. Knowledge-Based Systems, 70, 293–300. Huang, X., et al. (2014). DSKmeans: A new kmeans-type approach to discriminative subspace clustering. Knowledge-Based Systems, 70, 293–300.
5.
Zurück zum Zitat Huang, X., Ye, Y., & Zhang, H. (2014). Extensions of kmeans-type algorithms: A new clustering framework by integrating intracluster compactness and intercluster separation. IEEE Transactions on Neural Networks and Learning Systems, 25(8), 1433–1446. Huang, X., Ye, Y., & Zhang, H. (2014). Extensions of kmeans-type algorithms: A new clustering framework by integrating intracluster compactness and intercluster separation. IEEE Transactions on Neural Networks and Learning Systems, 25(8), 1433–1446.
6.
Zurück zum Zitat Selvanambi, R., & Natarajan, J. (2016). Cyclic repeated patterns in sequential pattern mining based on the fuzzy CMeans clustering and association rule mining technique. International Journal of Intelligent Engineering & Systems, 1, 176–185. Selvanambi, R., & Natarajan, J. (2016). Cyclic repeated patterns in sequential pattern mining based on the fuzzy CMeans clustering and association rule mining technique. International Journal of Intelligent Engineering & Systems, 1, 176–185.
7.
Zurück zum Zitat Martínez-Pérez, Á. (2018). A density-sensitive hierarchical clustering method. Journal of Classification, 35(3), 481–510.MathSciNetMATH Martínez-Pérez, Á. (2018). A density-sensitive hierarchical clustering method. Journal of Classification, 35(3), 481–510.MathSciNetMATH
8.
Zurück zum Zitat Triayudi, A., & Fitri, I. (2018). Comparision of parameter-free agglomerative hierarchical clustering methods. ICIC Express Letters, 12(10), 973–980. Triayudi, A., & Fitri, I. (2018). Comparision of parameter-free agglomerative hierarchical clustering methods. ICIC Express Letters, 12(10), 973–980.
9.
Zurück zum Zitat Xiao, X., Ding, S., & Shi, Z. (2018). An improved Density peaks clustering algorithm with fast finding cluster centers. Knowledge-Based Systems, 158, 65–74. Xiao, X., Ding, S., & Shi, Z. (2018). An improved Density peaks clustering algorithm with fast finding cluster centers. Knowledge-Based Systems, 158, 65–74.
10.
Zurück zum Zitat Cui, G., Li, X., & Dong, Y. (2018). Subspace clustering guided convex nonnegative matrix factorization. Neurocomputing, 292, 38–48. Cui, G., Li, X., & Dong, Y. (2018). Subspace clustering guided convex nonnegative matrix factorization. Neurocomputing, 292, 38–48.
11.
Zurück zum Zitat Deng, Z., Choi, K.-S., Jiang, Y., Wang, J., & Wang, S. (2016). A survey on soft subspace clustering. Information Sciences, 348, 84–106.MathSciNetMATH Deng, Z., Choi, K.-S., Jiang, Y., Wang, J., & Wang, S. (2016). A survey on soft subspace clustering. Information Sciences, 348, 84–106.MathSciNetMATH
12.
Zurück zum Zitat Hu, H., Lin, Z., Feng, J., & Zhou, J. (2004) Smooth Representation Clustering. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 3834–3841). Hu, H., Lin, Z., Feng, J., & Zhou, J. (2004) Smooth Representation Clustering. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 3834–3841).
13.
Zurück zum Zitat Elhamifar, E., & Vidal, R. (2009). Sparse subspace clustering. In Conference on Computer Vision and Pattern Recognition (pp. 2790–2797). Elhamifar, E., & Vidal, R. (2009). Sparse subspace clustering. In Conference on Computer Vision and Pattern Recognition (pp. 2790–2797).
14.
Zurück zum Zitat Liu, G., et al. (2013). Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 171–184. Liu, G., et al. (2013). Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 171–184.
15.
Zurück zum Zitat Lu, C.-Y. et al. (2012). Robust and efficient subspace segmentation via least squares regression. In European Conference on Computer Vision (pp. 347–360). Lu, C.-Y. et al. (2012). Robust and efficient subspace segmentation via least squares regression. In European Conference on Computer Vision (pp. 347–360).
16.
Zurück zum Zitat Zhen, L., Peng, D., Wang, W., & Yao, X. (2020). Kernel truncated regression representation for robust subspace clustering. Information Sciences, 524, 59–76.MathSciNet Zhen, L., Peng, D., Wang, W., & Yao, X. (2020). Kernel truncated regression representation for robust subspace clustering. Information Sciences, 524, 59–76.MathSciNet
17.
Zurück zum Zitat Pourkamali-Anaraki, F., Folberth, J., & Becker, S. (2020). Efficient solvers for sparse subspace clustering. Signal Processing, 172, 1. Pourkamali-Anaraki, F., Folberth, J., & Becker, S. (2020). Efficient solvers for sparse subspace clustering. Signal Processing, 172, 1.
18.
Zurück zum Zitat Zhong, G., & Pun, C.-M. (2020). Subspace clustering by simultaneously feature selection and similarity learning. Knowledge-Based Systems, 193, 1. Zhong, G., & Pun, C.-M. (2020). Subspace clustering by simultaneously feature selection and similarity learning. Knowledge-Based Systems, 193, 1.
19.
Zurück zum Zitat You, C.-Z., & Wu, X.-J. (2018). Feature selection embedded subspace clustering with low-rank and locality constraints. In IEEE International Smart Cities Conference (ISC2) (pp. 1–8). You, C.-Z., & Wu, X.-J. (2018). Feature selection embedded subspace clustering with low-rank and locality constraints. In IEEE International Smart Cities Conference (ISC2) (pp. 1–8).
20.
Zurück zum Zitat Abdolali, M., & Rahmati, M. (2020). Neither global nor local: A hierarchical robust subspace clustering for image data. Information Sciences, 514, 333–353. Abdolali, M., & Rahmati, M. (2020). Neither global nor local: A hierarchical robust subspace clustering for image data. Information Sciences, 514, 333–353.
21.
Zurück zum Zitat Zheng, Q., et al. (2020). Feature concatenation multi-view subspace clustering. Neurocomputing, 379, 89–102. Zheng, Q., et al. (2020). Feature concatenation multi-view subspace clustering. Neurocomputing, 379, 89–102.
22.
Zurück zum Zitat Weng, W., Zhou, W., Chen, J., Peng, H., & Cai, H. (2020). Enhancing multi-view clustering through common subspace integration by considering both global similarities and local structures. Neurocomputing, 378, 375–386. Weng, W., Zhou, W., Chen, J., Peng, H., & Cai, H. (2020). Enhancing multi-view clustering through common subspace integration by considering both global similarities and local structures. Neurocomputing, 378, 375–386.
23.
Zurück zum Zitat Kelkar, B. A., Rodd, S. F., & Kulkarni, U. P. (2019). Estimating distance threshold for greedy subspace clustering. Expert Systems with Applications, 135, 219–236. Kelkar, B. A., Rodd, S. F., & Kulkarni, U. P. (2019). Estimating distance threshold for greedy subspace clustering. Expert Systems with Applications, 135, 219–236.
24.
Zurück zum Zitat Guillon, A., Lesot, M.-J., & Marsala, C. (2019). A proximal framework for fuzzy subspace clustering. Fuzzy Sets and Systems, 366, 34–45.MathSciNetMATH Guillon, A., Lesot, M.-J., & Marsala, C. (2019). A proximal framework for fuzzy subspace clustering. Fuzzy Sets and Systems, 366, 34–45.MathSciNetMATH
25.
Zurück zum Zitat Harikumar, S., & Kaimal, M. R. (2019). SubspaceDB: In-database subspace clustering for analytical query processing. Data & Knowledge Engineering, 121, 109–129. Harikumar, S., & Kaimal, M. R. (2019). SubspaceDB: In-database subspace clustering for analytical query processing. Data & Knowledge Engineering, 121, 109–129.
26.
Zurück zum Zitat Yang, Y., & Zhang, X. (2019) Block-diagonal subspace clustering with laplacian rank constraint. In IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (pp 1556–1559). Yang, Y., & Zhang, X. (2019) Block-diagonal subspace clustering with laplacian rank constraint. In IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (pp 1556–1559).
27.
Zurück zum Zitat Cheng, W., Chow, T. W. S., & Zhao, M. (2016). Locality constrained-ℓp sparse subspace clustering for image clustering. Neurocomputing, 205, 22–31. Cheng, W., Chow, T. W. S., & Zhao, M. (2016). Locality constrained-ℓp sparse subspace clustering for image clustering. Neurocomputing, 205, 22–31.
28.
Zurück zum Zitat Li, Q., Liu, W., & Li, L. (2018). Affinity learning via a diffusion process for subspace clustering. Pattern Recognition, 84, 39–50. Li, Q., Liu, W., & Li, L. (2018). Affinity learning via a diffusion process for subspace clustering. Pattern Recognition, 84, 39–50.
29.
Zurück zum Zitat Dong, W., & Xiao-jun, W. (2019). Robust affine subspace clustering via smoothed ℓ0ℓ0 -norm. Neural Processing Letters, 50, 785–797. Dong, W., & Xiao-jun, W. (2019). Robust affine subspace clustering via smoothed ℓ0ℓ0 -norm. Neural Processing Letters, 50, 785–797.
30.
Zurück zum Zitat Babaeian, A., Babaee, M., Bayestehtashk, A., & Bandarabadi, M. (2015). Nonlinear subspace clustering using curvature constrained distances. Pattern Recognition Letters, 68(1), 118–125. Babaeian, A., Babaee, M., Bayestehtashk, A., & Bandarabadi, M. (2015). Nonlinear subspace clustering using curvature constrained distances. Pattern Recognition Letters, 68(1), 118–125.
31.
Zurück zum Zitat Chen, J., Zhang, H., Mao, H., Sang, Y., & Yi, Z. (2016). Symmetric low-rank representation for subspace clustering. Neurocomputing, 173(3), 1192–1202. Chen, J., Zhang, H., Mao, H., Sang, Y., & Yi, Z. (2016). Symmetric low-rank representation for subspace clustering. Neurocomputing, 173(3), 1192–1202.
32.
Zurück zum Zitat Guo, Y., Gao, J., & Li, F. (2015). Random spatial subspace clustering. Knowledge-Based Systems, 74, 106–118. Guo, Y., Gao, J., & Li, F. (2015). Random spatial subspace clustering. Knowledge-Based Systems, 74, 106–118.
33.
Zurück zum Zitat Fackeldey, K., Sikorski, A., & Weber, M. (2018). Spectral clustering for non-reversible Markov chains. Computational and Applied Mathematics, 37(5), 6376–6391.MathSciNetMATH Fackeldey, K., Sikorski, A., & Weber, M. (2018). Spectral clustering for non-reversible Markov chains. Computational and Applied Mathematics, 37(5), 6376–6391.MathSciNetMATH
34.
Zurück zum Zitat Liang, R., Bai, Y., & Lin, H. X. (2019). An inexact splitting method for the subspace segmentation from incomplete and noisy observations. Journal of Global Optimization, 73, 411–429.MathSciNetMATH Liang, R., Bai, Y., & Lin, H. X. (2019). An inexact splitting method for the subspace segmentation from incomplete and noisy observations. Journal of Global Optimization, 73, 411–429.MathSciNetMATH
35.
Zurück zum Zitat Zhu, W., Jiwen, L., & Zhou, J. (2018). Nonlinear subspace clustering for image clustering. Pattern Recognition Letters, 107, 131–136. Zhu, W., Jiwen, L., & Zhou, J. (2018). Nonlinear subspace clustering for image clustering. Pattern Recognition Letters, 107, 131–136.
36.
Zurück zum Zitat Bai, L., Liang, J., & Guo, Y. (2018). An ensemble clusterer of multiple fuzzy k-means clusterings to recognize arbitrarily shaped clusters. IEEE Transactions on Fuzzy Systems, 26(6), 3524–3533. Bai, L., Liang, J., & Guo, Y. (2018). An ensemble clusterer of multiple fuzzy k-means clusterings to recognize arbitrarily shaped clusters. IEEE Transactions on Fuzzy Systems, 26(6), 3524–3533.
37.
Zurück zum Zitat Chen, J., Zheng, H., Lin, X., Yangyang, W., & Mengmeng, S. (2018). A novel image segmentation method based on fast density clustering algorithm. Engineering Applications of Artificial Intelligence, 73, 92–110. Chen, J., Zheng, H., Lin, X., Yangyang, W., & Mengmeng, S. (2018). A novel image segmentation method based on fast density clustering algorithm. Engineering Applications of Artificial Intelligence, 73, 92–110.
38.
Zurück zum Zitat Choy, S. K., Lam, S. Y., Yu, K. W., Lee, W. Y., & Leung, K. T. (2017). Fuzzy model-based clustering and its application in image segmentation. Pattern Recognition, 68, 141–157. Choy, S. K., Lam, S. Y., Yu, K. W., Lee, W. Y., & Leung, K. T. (2017). Fuzzy model-based clustering and its application in image segmentation. Pattern Recognition, 68, 141–157.
39.
Zurück zum Zitat Zhao, F., Liu, H., & Fan, J. (2015). A multiobjective spatial fuzzy clustering algorithm for image segmentation. Applied Soft Computing, 30, 48–57. Zhao, F., Liu, H., & Fan, J. (2015). A multiobjective spatial fuzzy clustering algorithm for image segmentation. Applied Soft Computing, 30, 48–57.
40.
Zurück zum Zitat Zhang, X., & Sun, Y. (2017). Improved fuzzy clustering for image segmentation based on local and non-local information. In International Conference on Security, Pattern Analysis, and Cybernetics (pp. 49–54). Zhang, X., & Sun, Y. (2017). Improved fuzzy clustering for image segmentation based on local and non-local information. In International Conference on Security, Pattern Analysis, and Cybernetics (pp. 49–54).
41.
Zurück zum Zitat Guo, L., Chen, L., Wu, Y., & PhilipChen, C. L. (2016). Image guided fuzzy clustering for image segmentation. International Conference on Systems, Man, and Cybernetics, 1, 004271–004276. Guo, L., Chen, L., Wu, Y., & PhilipChen, C. L. (2016). Image guided fuzzy clustering for image segmentation. International Conference on Systems, Man, and Cybernetics, 1, 004271–004276.
42.
Zurück zum Zitat Liu, G., Zhang, Y., & Wang, A. (2015). Incorporating adaptive local information into fuzzy clustering for image segmentation. IEEE Transactions on Image Processing, 24(11), 3990–4000.MathSciNetMATH Liu, G., Zhang, Y., & Wang, A. (2015). Incorporating adaptive local information into fuzzy clustering for image segmentation. IEEE Transactions on Image Processing, 24(11), 3990–4000.MathSciNetMATH
43.
Zurück zum Zitat Saikumar, T., Yojana, K., Madhava Rao, C., & Murthy, P. S. (2012). Fast Improved Kernel Fuzzy C-Means (IKFCM) clustering for image segmentation on level set method. In International conference on advances in engineering; Science and management (pp. 445–449). Saikumar, T., Yojana, K., Madhava Rao, C., & Murthy, P. S. (2012). Fast Improved Kernel Fuzzy C-Means (IKFCM) clustering for image segmentation on level set method. In International conference on advances in engineering; Science and management (pp. 445–449).
44.
Zurück zum Zitat Zhao, F., & Jiao, L. (2011). Spatial improved fuzzy c-means clustering for image segmentation. In International Conference on Electronic & Mechanical Engineering and Information Technology (pp. 4791–4794). Zhao, F., & Jiao, L. (2011). Spatial improved fuzzy c-means clustering for image segmentation. In International Conference on Electronic & Mechanical Engineering and Information Technology (pp. 4791–4794).
45.
Zurück zum Zitat Rajeswari, M., Wei, B. C., & Yeow, L. S. (2010) Spatial Multiple Criteria Fuzzy Clustering for Image Segmentation. In Second International Conference on Computational Intelligence; Modelling and Simulation (pp. 305–310). Rajeswari, M., Wei, B. C., & Yeow, L. S. (2010) Spatial Multiple Criteria Fuzzy Clustering for Image Segmentation. In Second International Conference on Computational Intelligence; Modelling and Simulation (pp. 305–310).
46.
Zurück zum Zitat Sulaiman, S. N., & Isa, N. A. M. (2010). Adaptive fuzzy-K-means clustering algorithm for image segmentation. IEEE Transactions on Consumer Electronics, 4, 2661–2668. Sulaiman, S. N., & Isa, N. A. M. (2010). Adaptive fuzzy-K-means clustering algorithm for image segmentation. IEEE Transactions on Consumer Electronics, 4, 2661–2668.
47.
Zurück zum Zitat Zhu, F., Song, Y., & Chen, J. (2010). Fuzzy C-means clustering for image segmentation using the adaptive spatially median neighborhood information. In Chinese Conference on Pattern Recognition (CCPR) (pp. 1–5). Zhu, F., Song, Y., & Chen, J. (2010). Fuzzy C-means clustering for image segmentation using the adaptive spatially median neighborhood information. In Chinese Conference on Pattern Recognition (CCPR) (pp. 1–5).
48.
Zurück zum Zitat Morales, E. R. C., & Mendizabal, Y. Y. (2010) Contiguity-constrained hierarchical clustering for image segmentation. In 2nd International Conference on Image Processing Theory; Tools and Applications (pp. 279–283). Morales, E. R. C., & Mendizabal, Y. Y. (2010) Contiguity-constrained hierarchical clustering for image segmentation. In 2nd International Conference on Image Processing Theory; Tools and Applications (pp. 279–283).
49.
Zurück zum Zitat Wicaksono, Y. A., Rizaldy, A., Fahriah, S., & Soeleman, M. A. (2017) Improve image segmentation based on closed form matting using K-means clustering. In International Seminar on Application for Technology of Information and Communication (iSemantic) (pp. 26–30). Wicaksono, Y. A., Rizaldy, A., Fahriah, S., & Soeleman, M. A. (2017) Improve image segmentation based on closed form matting using K-means clustering. In International Seminar on Application for Technology of Information and Communication (iSemantic) (pp. 26–30).
50.
Zurück zum Zitat Li, Z., & Tang, Y. (2018). Comparative density peaks clustering. Expert Systems with Applications, 95, 236–247. Li, Z., & Tang, Y. (2018). Comparative density peaks clustering. Expert Systems with Applications, 95, 236–247.
51.
Zurück zum Zitat Myhre, J. N., Mikalsen, K. Ø., Løkse, S., & Jenssen, R. (2018). Robust clustering using a kNN mode seeking ensemble. Pattern Recognition, 76(491–505), 2018. Myhre, J. N., Mikalsen, K. Ø., Løkse, S., & Jenssen, R. (2018). Robust clustering using a kNN mode seeking ensemble. Pattern Recognition, 76(491–505), 2018.
52.
Zurück zum Zitat Hou, J., Liu, W., Xu, E., & Cui, H. (2016). Towards parameter-independent data clustering and image segmentation. Pattern Recognition, 60, 25–36. Hou, J., Liu, W., Xu, E., & Cui, H. (2016). Towards parameter-independent data clustering and image segmentation. Pattern Recognition, 60, 25–36.
53.
Zurück zum Zitat Singh, P., & Meshram, P. A. (2017) Survey of density based clustering algorithms and its variants. In International Conference on Inventive Computing and Informatics (pp. 920–926). Singh, P., & Meshram, P. A. (2017) Survey of density based clustering algorithms and its variants. In International Conference on Inventive Computing and Informatics (pp. 920–926).
54.
Zurück zum Zitat Du, H., Fang, W., Huang, H., & Zeng, S. (2018). MMDBC: Density-based clustering algorithm for mixed attributes and multi-dimension data. In International Conference on Big Data and Smart Computing (pp. 549–552). Du, H., Fang, W., Huang, H., & Zeng, S. (2018). MMDBC: Density-based clustering algorithm for mixed attributes and multi-dimension data. In International Conference on Big Data and Smart Computing (pp. 549–552).
55.
Zurück zum Zitat Zhu, Y., & Huang, C. (2012). An adaptive histogram equalization algorithm on the image gray level mapping. Physics Procedia, 25, 601–608. Zhu, Y., & Huang, C. (2012). An adaptive histogram equalization algorithm on the image gray level mapping. Physics Procedia, 25, 601–608.
56.
Zurück zum Zitat Juneja, K. (2017). A noise robust VDD composed PCA-LDA model for face recognition. In International Conference on Information, Communication and Computing Technology (pp. 216–229). Juneja, K. (2017). A noise robust VDD composed PCA-LDA model for face recognition. In International Conference on Information, Communication and Computing Technology (pp. 216–229).
57.
Zurück zum Zitat Martinez, A. M., & Benavente, R. (1998) The AR Face Database. Martinez, A. M., & Benavente, R. (1998) The AR Face Database.
Metadaten
Titel
Multi-Featured and Fuzzy Based Dual Analysis Approach to Optimize the Subspace Clustering for Images
verfasst von
Kapil Juneja
Publikationsdatum
19.05.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07482-0

Weitere Artikel der Ausgabe 3/2020

Wireless Personal Communications 3/2020 Zur Ausgabe

Neuer Inhalt