Skip to main content
Erschienen in:

17.06.2022 | Original Article

Multi-fidelity reduced-order model for GPU-enabled microfluidic concentration gradient design

verfasst von: Haizhou Yang, Seong Hyeon Hong, Gang Wang, Yi Wang

Erschienen in: Engineering with Computers | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a multi-fidelity reduced-order model (MFROM) and global optimization method for rapid and accurate simulation and design of microfluidic concentration gradient generators (µCGGs). It divides the entire process into two stages: the offline ROM construction and the online ROM-based design optimization. In the offline stage, proper orthogonal decomposition is used to obtain the low-dimensional representation of the high-fidelity CFD data and the low-fidelity physics-based component model (PBCM) data, and a kriging model is developed to bridge the fidelity gap between PBCM and CFD in the modal subspace, yielding compact MFROM applicable within broad trade space. The GPU-enabled genetic algorithm is utilized to optimize µCGG design parameters through massively parallelized evaluation of the fast-running MFROM. The numerical results show that MFROM is a feasible and accurate multi-fidelity modeling approach to replace costly CFD simulation for rapid global optimization (up to 11 s/optimization). The design parameters obtained by MFROM-based optimization produce CGs that match the prescribed ones very well with an average error < 6%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Cabaleiro JM (2020) Flowrate independent 3D printed microfluidic concentration gradient generator. Chem Eng J 382:122742CrossRef Cabaleiro JM (2020) Flowrate independent 3D printed microfluidic concentration gradient generator. Chem Eng J 382:122742CrossRef
7.
Zurück zum Zitat Liu X, Jia Y, Han Z et al (2021) Integrating a concentration gradient generator and a single-cell trapper array for high-throughput screening the bioeffects of nanomaterials. Angew Chem Int Ed 60:12319–12322CrossRef Liu X, Jia Y, Han Z et al (2021) Integrating a concentration gradient generator and a single-cell trapper array for high-throughput screening the bioeffects of nanomaterials. Angew Chem Int Ed 60:12319–12322CrossRef
8.
Zurück zum Zitat Sadava DE, Hillis DM, Heller HC (2009) Life: the science of biology. Macmillan, New York Sadava DE, Hillis DM, Heller HC (2009) Life: the science of biology. Macmillan, New York
12.
Zurück zum Zitat Seemann R, Brinkmann M, Pfohl T, Herminghaus S (2011) Droplet based microfluidics. Rep Prog Phys 75:16601CrossRef Seemann R, Brinkmann M, Pfohl T, Herminghaus S (2011) Droplet based microfluidics. Rep Prog Phys 75:16601CrossRef
14.
Zurück zum Zitat Ji W, Ho T-Y, Wang J, Yao H (2019) Microfluidic design for concentration gradient generation using artificial neural network. IEEE Trans Comput Des Integr Circuits Syst 39:2544–2557CrossRef Ji W, Ho T-Y, Wang J, Yao H (2019) Microfluidic design for concentration gradient generation using artificial neural network. IEEE Trans Comput Des Integr Circuits Syst 39:2544–2557CrossRef
15.
Zurück zum Zitat Yang H, Hong SH, ZhG R, Wang Y (2020) Surrogate-based optimization with adaptive sampling for microfluidic concentration gradient generator design. RSC Adv 10:13799–13814CrossRef Yang H, Hong SH, ZhG R, Wang Y (2020) Surrogate-based optimization with adaptive sampling for microfluidic concentration gradient generator design. RSC Adv 10:13799–13814CrossRef
16.
Zurück zum Zitat Hong SH, Yang H, Wang Y (2020) Inverse design of microfluidic concentration gradient generator using deep learning and physics-based component model. Microfluid Nanofluidics 24:1–20CrossRef Hong SH, Yang H, Wang Y (2020) Inverse design of microfluidic concentration gradient generator using deep learning and physics-based component model. Microfluid Nanofluidics 24:1–20CrossRef
17.
Zurück zum Zitat Ou J, Hong SH, Ziehl P, Wang Y (2022) GPU-based global path planning using genetic algorithm with near corner initialization. J Intell Robot Syst 104:1–17CrossRef Ou J, Hong SH, Ziehl P, Wang Y (2022) GPU-based global path planning using genetic algorithm with near corner initialization. J Intell Robot Syst 104:1–17CrossRef
19.
Zurück zum Zitat Robertson ED, Wang Y, Pant K et al (2018) A Flow feature detection framework for large-scale computational data based on incremental proper orthogonal decomposition and data mining. Int J Comut Fluid Dyn 32:261–277CrossRef Robertson ED, Wang Y, Pant K et al (2018) A Flow feature detection framework for large-scale computational data based on incremental proper orthogonal decomposition and data mining. Int J Comut Fluid Dyn 32:261–277CrossRef
21.
Zurück zum Zitat Kato H, Funazaki K (2014) POD-driven adaptive sampling for efficient surrogate modeling and its application to supersonic turbine optimization. In: Turbo expo: power for land, sea, and air. American Society of Mechanical Engineers, p V02BT45A023 Kato H, Funazaki K (2014) POD-driven adaptive sampling for efficient surrogate modeling and its application to supersonic turbine optimization. In: Turbo expo: power for land, sea, and air. American Society of Mechanical Engineers, p V02BT45A023
22.
Zurück zum Zitat Gutierrez-Castillo P, Thomases B (2019) Proper orthogonal decomposition (pod) of the flow dynamics for a viscoelastic fluid in a four-roll mill geometry at the stokes limit. J Nonnewton Fluid Mech 264:48–61MathSciNetCrossRef Gutierrez-Castillo P, Thomases B (2019) Proper orthogonal decomposition (pod) of the flow dynamics for a viscoelastic fluid in a four-roll mill geometry at the stokes limit. J Nonnewton Fluid Mech 264:48–61MathSciNetCrossRef
23.
Zurück zum Zitat Quesada C, Villon P, Salsac A-V (2021) Real-time prediction of the deformation of microcapsules using proper orthogonal decomposition. J Fluids Struct 101:103193CrossRef Quesada C, Villon P, Salsac A-V (2021) Real-time prediction of the deformation of microcapsules using proper orthogonal decomposition. J Fluids Struct 101:103193CrossRef
24.
Zurück zum Zitat Couckuyt I, Dhaene T, Demeester P (2014) OoDACE toolbox: a flexible object-oriented kriging implementation. J Mach Learn Res 15:3183–3186MATH Couckuyt I, Dhaene T, Demeester P (2014) OoDACE toolbox: a flexible object-oriented kriging implementation. J Mach Learn Res 15:3183–3186MATH
25.
Zurück zum Zitat Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: past, present, and future. Multimed Tools Appl 80:8091–8126CrossRef Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: past, present, and future. Multimed Tools Appl 80:8091–8126CrossRef
26.
Zurück zum Zitat Hong SH, Cornelius J, Wang Y, Pant K (2019) Fault compensation by online updating of genetic algorithm-selected neural network model for model predictive control. SN Appl Sci 1:1–16CrossRef Hong SH, Cornelius J, Wang Y, Pant K (2019) Fault compensation by online updating of genetic algorithm-selected neural network model for model predictive control. SN Appl Sci 1:1–16CrossRef
Metadaten
Titel
Multi-fidelity reduced-order model for GPU-enabled microfluidic concentration gradient design
verfasst von
Haizhou Yang
Seong Hyeon Hong
Gang Wang
Yi Wang
Publikationsdatum
17.06.2022
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 4/2023
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01672-z