Skip to main content
Erschienen in: Microsystem Technologies 9/2017

06.07.2016 | Technical Paper

Multi-gate device and summing-circuit co-design robustness studies @ 32-nm technology node

verfasst von: Amresh Kumar, Aminul Islam

Erschienen in: Microsystem Technologies | Ausgabe 9/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a FinFET-based static 1-bit full adder cell that helps to recover the huge penalty in performance, while staying quite close to the minimum energy point. The proposed design offers higher computing speed (by 7.96×) and lower energy (by 5.86×), lower energy-delay product (EDP) (by 21.08×) at the expense of higher power dissipation (by 1.36×) compared to its MOSFET counterpart. It proves its robustness against process variations by featuring tighter spread in power distribution (by 3.20×), in delay distribution (by 4.70×), in PDP (power-delay product) distribution (by 3.35×) and in EDP distribution (by 3.14×) compared to its MOSFET counterpart. The proposed design achieves these improvements due to employment of new FinFET technology in the full adder design. Multi-gate devices in this technology are less affected by random dopant fluctuation (RDF) and short-channel effects such as threshold voltage rolloff, drain-induced barrier lowering (DIBL), etc. To establish that our design is better this paper analyzes five more 1-bit full adder cells and compares them with the proposed design in terms of power, delay and PDP. We perform simulation using 32-nm Predictive Technology Model (PTM) parameters on SPICE.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Asenov A, Kaya S, Davies JH (2002) Intrinsic threshold voltage fluctuations in decananometer MOSFETs due to local oxide thickness variations. IEEE Trans Electron Devices 49(1):112–119CrossRef Asenov A, Kaya S, Davies JH (2002) Intrinsic threshold voltage fluctuations in decananometer MOSFETs due to local oxide thickness variations. IEEE Trans Electron Devices 49(1):112–119CrossRef
Zurück zum Zitat Asenov A, Kaya S, Brown AR (2003) Intrinsic parameter fluctuations in decananometer MOSFETs introduced by line edge roughness. IEEE Trans Electron Devices 50(5):1254–1260CrossRef Asenov A, Kaya S, Brown AR (2003) Intrinsic parameter fluctuations in decananometer MOSFETs introduced by line edge roughness. IEEE Trans Electron Devices 50(5):1254–1260CrossRef
Zurück zum Zitat Bernstein K, Frank DJ, Gattiker AE, Haensch W, Ji BL, Nassif SR, Nowak EJ, Pearson DJ, Rohrer NJ (2006) High-performance CMOS variability in the 65-nm regime and beyond. IBM J Res Dev 50(4.5):433–449CrossRef Bernstein K, Frank DJ, Gattiker AE, Haensch W, Ji BL, Nassif SR, Nowak EJ, Pearson DJ, Rohrer NJ (2006) High-performance CMOS variability in the 65-nm regime and beyond. IBM J Res Dev 50(4.5):433–449CrossRef
Zurück zum Zitat Borkar S (2005) Designing reliable systems from unreliable components: the challenges of transistor variability and degradation. IEEE Micro 25(6):10–16CrossRef Borkar S (2005) Designing reliable systems from unreliable components: the challenges of transistor variability and degradation. IEEE Micro 25(6):10–16CrossRef
Zurück zum Zitat Bowman KA (2002) Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration. IEEE J Solid State Circuits 37(2):183–190CrossRef Bowman KA (2002) Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration. IEEE J Solid State Circuits 37(2):183–190CrossRef
Zurück zum Zitat Calhoun B, Wang A, Chandrakasan A (2005) Modeling and sizing for minimum energy operation in subthreshold circuits. IEEE J Solid State Circuits 40(9):1778–1786CrossRef Calhoun B, Wang A, Chandrakasan A (2005) Modeling and sizing for minimum energy operation in subthreshold circuits. IEEE J Solid State Circuits 40(9):1778–1786CrossRef
Zurück zum Zitat Dokania V, Islam A (2015) Circuit-level design technique to mitigate impact of process, voltage and temperature variations in complementary metal-oxide semiconductor full adder cells. Circuits Devices Syst IET 9(3):204–212CrossRef Dokania V, Islam A (2015) Circuit-level design technique to mitigate impact of process, voltage and temperature variations in complementary metal-oxide semiconductor full adder cells. Circuits Devices Syst IET 9(3):204–212CrossRef
Zurück zum Zitat Enz C, Krummenacher F, Vittoz E (1995) An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. J Analog IC Signal Proc 8(1):83–114CrossRef Enz C, Krummenacher F, Vittoz E (1995) An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. J Analog IC Signal Proc 8(1):83–114CrossRef
Zurück zum Zitat Kim K (2005) Leakage power analysis of 25-nm double-gate CMOS devices and circuits. IEEE Trans Electron Devices 52(5):980–986CrossRef Kim K (2005) Leakage power analysis of 25-nm double-gate CMOS devices and circuits. IEEE Trans Electron Devices 52(5):980–986CrossRef
Zurück zum Zitat Kuhn K (2008) Managing process variation in Intel’s 45 nm CMOS technology. Intel Technol J 12(2):92–110 Kuhn K (2008) Managing process variation in Intel’s 45 nm CMOS technology. Intel Technol J 12(2):92–110
Zurück zum Zitat Markovic D, Wang CC, Alarcon LP, Liu TT, Rabaey JM (2010) Ultralow-power design in near-threshold region. Proc IEEE 98(2):237–252CrossRef Markovic D, Wang CC, Alarcon LP, Liu TT, Rabaey JM (2010) Ultralow-power design in near-threshold region. Proc IEEE 98(2):237–252CrossRef
Zurück zum Zitat Mukhopadhyay S, Kang K, Mahmoodi H, Roy K (2005) Reliable and self-repairing SRAM in nano-scale technologies using leakage and delay monitoring. In: IEEE International Conference on Test, Austin, TX, pp 1135–1144 Mukhopadhyay S, Kang K, Mahmoodi H, Roy K (2005) Reliable and self-repairing SRAM in nano-scale technologies using leakage and delay monitoring. In: IEEE International Conference on Test, Austin, TX, pp 1135–1144
Zurück zum Zitat Predictive Technology Model (2008) Nanoscale integration and modeling (NIMO) group, Arizona State University (ASU). http://ptm.asu.edu/. Accessed 22 Jan 2015 Predictive Technology Model (2008) Nanoscale integration and modeling (NIMO) group, Arizona State University (ASU). http://​ptm.​asu.​edu/​. Accessed 22 Jan 2015
Zurück zum Zitat Rabaey JM, Chandrakasan A, Nikolic B (2002) Digital integrated circuits: a design perspective, 2nd edn. Prentice Hall, Englewood Cliffs Rabaey JM, Chandrakasan A, Nikolic B (2002) Digital integrated circuits: a design perspective, 2nd edn. Prentice Hall, Englewood Cliffs
Zurück zum Zitat Saha SK (2010) Modeling process variability in scaled CMOS technology. IEEE Design Test Comput 27(2):8–16CrossRef Saha SK (2010) Modeling process variability in scaled CMOS technology. IEEE Design Test Comput 27(2):8–16CrossRef
Zurück zum Zitat Seoane N, Indalecio G, Comesana E, Aldegunde M, Garcia-Loureiro AJ, Kalna K (2014) Random dopant, line-edge roughness, and gate workfunction variability in a nano InGaAs FinFET. Electron Devices IEEE Trans 61(2):466–472CrossRef Seoane N, Indalecio G, Comesana E, Aldegunde M, Garcia-Loureiro AJ, Kalna K (2014) Random dopant, line-edge roughness, and gate workfunction variability in a nano InGaAs FinFET. Electron Devices IEEE Trans 61(2):466–472CrossRef
Zurück zum Zitat Shams AM, Darwish TK, Bayoumi MA (2002) Performance analysis of low-power 1-bit CMOS full adder cells. IEEE Trans Very Large Scale Integr (VLSI) Syst 10(1):20–29CrossRef Shams AM, Darwish TK, Bayoumi MA (2002) Performance analysis of low-power 1-bit CMOS full adder cells. IEEE Trans Very Large Scale Integr (VLSI) Syst 10(1):20–29CrossRef
Zurück zum Zitat Shang H (2006) Investigation of FinFET devices for 32nm technologies and beyond. In: Symposium on VLSI Technology, 2006. Digest of Technical Papers, Honolulu, HI. IEEE, pp 54–55 Shang H (2006) Investigation of FinFET devices for 32nm technologies and beyond. In: Symposium on VLSI Technology, 2006. Digest of Technical Papers, Honolulu, HI. IEEE, pp 54–55
Zurück zum Zitat Taur Y, Ning TH (2009) Fundamentals of modern VLSI devices. Cambridge University Press, New York, Ch. 5, Sec. 5.3.5.2, pp 176–179 Taur Y, Ning TH (2009) Fundamentals of modern VLSI devices. Cambridge University Press, New York, Ch. 5, Sec. 5.3.5.2, pp 176–179
Zurück zum Zitat Tawfik SA, Kursun V (2008) Low-power and compact sequential circuits with independent-gate FinFETs. IEEE Trans Electron Devices 55(1):60–70CrossRef Tawfik SA, Kursun V (2008) Low-power and compact sequential circuits with independent-gate FinFETs. IEEE Trans Electron Devices 55(1):60–70CrossRef
Zurück zum Zitat Tawfik SA, Kursun V (2009) FinFET technology development guidelines for higher performance, lower power, and stronger resilience to parameter variations. In: 52nd IEEE International Midwest Symposium on Circuits and Systems, Cancun. IEEE, pp 431–434 Tawfik SA, Kursun V (2009) FinFET technology development guidelines for higher performance, lower power, and stronger resilience to parameter variations. In: 52nd IEEE International Midwest Symposium on Circuits and Systems, Cancun. IEEE, pp 431–434
Zurück zum Zitat Tschanz JW (2002) Adaptive body bias for reducing Impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage. IEEE J Solid State Circuits 37(11):1396–1402CrossRef Tschanz JW (2002) Adaptive body bias for reducing Impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage. IEEE J Solid State Circuits 37(11):1396–1402CrossRef
Zurück zum Zitat Vaddi R, Dasgupta S, Agarwal RP (2010) Device and circuit co-design robustness studies in the subthreshold logic for ultralow-power applications for 32 nm CMOS. IEEE Trans Electron Devices 57(3):654–664CrossRef Vaddi R, Dasgupta S, Agarwal RP (2010) Device and circuit co-design robustness studies in the subthreshold logic for ultralow-power applications for 32 nm CMOS. IEEE Trans Electron Devices 57(3):654–664CrossRef
Zurück zum Zitat Vittoz EA (2005) Weak inversion for ultimate low-power logic. In: Piguet C (ed) Low-Power electronics design. CRC Press, Boca Raton Vittoz EA (2005) Weak inversion for ultimate low-power logic. In: Piguet C (ed) Low-Power electronics design. CRC Press, Boca Raton
Zurück zum Zitat Zimmermann R, Fichtner W (1997) Low-power logic styles: CMOS versus pass-transistor logic. IEEE J Solid State Circuits 32:1079–1090CrossRef Zimmermann R, Fichtner W (1997) Low-power logic styles: CMOS versus pass-transistor logic. IEEE J Solid State Circuits 32:1079–1090CrossRef
Metadaten
Titel
Multi-gate device and summing-circuit co-design robustness studies @ 32-nm technology node
verfasst von
Amresh Kumar
Aminul Islam
Publikationsdatum
06.07.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 9/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3055-4

Weitere Artikel der Ausgabe 9/2017

Microsystem Technologies 9/2017 Zur Ausgabe

Neuer Inhalt