Skip to main content
Erschienen in:

26.12.2022

Multi-granularity Hierarchical Feature Extraction for Question-Answering Understanding

verfasst von: Xingguo Qin, Ya Zhou, Guimin Huang, Maolin Li, Jun Li

Erschienen in: Cognitive Computation | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Question-answering understanding systems are of central importance to many natural language processing tasks. A successful question-answering system first needs to accurately mine the semantics of the problem text and then match the semantic similarity between the question and the answer. Most of the current pre-training language modes use joint coding of questions and answers, a pre-training language model to avoid the problem of feature extraction from multilevel text structure, it through unified advance training ignores text semantic expression in different particle size, different levels of semantic features, and to some extent avoiding the serious problem of semantic understanding. In this paper, we focus on the problem of multi-granularity and multi-level feature expression of text semantics in question and answer understanding, and design a question-answering understanding method for multi-granularity hierarchical features. First, we extract features from two aspects, the traditional language model and the deep matching model, and then fuse these features to construct the similarity matrix, and learn the similarity matrix by designing three different models. Finally, the similarity matrix is learned by three different models, and after sorting, the overall similarity is obtained from the similarity of multiple granularity features. Evaluated by testing on WikiQA public datasets, experiments show that the results of our method are improved by adding the multi-granularity hierarchical feature learning method compared with traditional deep learning methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cambazoglu BB, Sanderson M, Scholer F, Croft B. A review of public datasets in question answering research. In: ACM SIGIR Forum, vol. 54. ACM New York, NY, USA; 2021. p. 1–23. Cambazoglu BB, Sanderson M, Scholer F, Croft B. A review of public datasets in question answering research. In: ACM SIGIR Forum, vol. 54. ACM New York, NY, USA; 2021. p. 1–23.
2.
Zurück zum Zitat Acheampong KN, Tian W. Advancement of textual answer triggering: cognitive boosting. IEEE Trans Emerg Top Comput. 2022;10(1):361–72.CrossRef Acheampong KN, Tian W. Advancement of textual answer triggering: cognitive boosting. IEEE Trans Emerg Top Comput. 2022;10(1):361–72.CrossRef
3.
Zurück zum Zitat Etezadi R, Shamsfard M. The state of the art in open domain complex question answering: a survey. Appl Intell. 2022;1–21. Etezadi R, Shamsfard M. The state of the art in open domain complex question answering: a survey. Appl Intell. 2022;1–21.
4.
Zurück zum Zitat Hao T, Li X, He Y, Wang FL, Qu Y. Recent progress in leveraging deep learning methods for question answering. Neural Comput Applic. 2022;1–19. Hao T, Li X, He Y, Wang FL, Qu Y. Recent progress in leveraging deep learning methods for question answering. Neural Comput Applic. 2022;1–19.
5.
Zurück zum Zitat Luo Y, Yang B, Xu D, Tian L. A survey: complex knowledge base question answering. In: 2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE). IEEE; 2022. p. 46–52. Luo Y, Yang B, Xu D, Tian L. A survey: complex knowledge base question answering. In: 2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE). IEEE; 2022. p. 46–52.
6.
Zurück zum Zitat Singh H, Nasery A, Mehta D, Agarwal A, Lamba J, Srinivasan BV. MIMOQA: multimodal input multimodal output question answering. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, p. 5317–32, Online, June 2021. Association for Computational Linguistics. Singh H, Nasery A, Mehta D, Agarwal A, Lamba J, Srinivasan BV. MIMOQA: multimodal input multimodal output question answering. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, p. 5317–32, Online, June 2021. Association for Computational Linguistics.
7.
Zurück zum Zitat Risch J, Möller T, Gutsch J, Pietsch M. Semantic answer similarity for evaluating question answering models. In: Proceedings of the 3rd Workshop on Machine Reading for Question Answering, Punta Cana, Dominican Republic, November 2021. p. 149–57. Association for Computational Linguistics. Risch J, Möller T, Gutsch J, Pietsch M. Semantic answer similarity for evaluating question answering models. In: Proceedings of the 3rd Workshop on Machine Reading for Question Answering, Punta Cana, Dominican Republic, November 2021. p. 149–57. Association for Computational Linguistics.
8.
Zurück zum Zitat Chakraborty N, Lukovnikov D, Maheshwari G, Trivedi P, Lehmann J, Fischer A. Introduction to neural network-based question answering over knowledge graphs. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2021;11(3):e1389. Chakraborty N, Lukovnikov D, Maheshwari G, Trivedi P, Lehmann J, Fischer A. Introduction to neural network-based question answering over knowledge graphs. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2021;11(3):e1389.
9.
Zurück zum Zitat Lan Y, He G, Jiang J, Jiang J, Zhao WX, Wen J-R. A survey on complex knowledge base question answering: methods, challenges and solutions. In: Zhou Z-H, editor. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages 4483–91. International Joint Conferences on Artificial Intelligence Organization, 8 2021. Survey Track. Lan Y, He G, Jiang J, Jiang J, Zhao WX, Wen J-R. A survey on complex knowledge base question answering: methods, challenges and solutions. In: Zhou Z-H, editor. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages 4483–91. International Joint Conferences on Artificial Intelligence Organization, 8 2021. Survey Track.
10.
Zurück zum Zitat Jia Z, Pramanik S, Roy RS, Weikum G. Complex temporal question answering on knowledge graphs. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 2021. p. 792–802. Jia Z, Pramanik S, Roy RS, Weikum G. Complex temporal question answering on knowledge graphs. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 2021. p. 792–802.
11.
Zurück zum Zitat Ren H, Dai H, Dai B, Chen X, Yasunaga M, Sun H, Schuurmans D, Leskovec J, Zhou D. LEGO: latent execution-guided reasoning for multi-hop question answering on knowledge graphs. In: Meila M, Zhang T, editors. Proceedings of the 38th International Conference on Machine Learning, vol. 139 of Proceedings of Machine Learning Research. p. 8959–70. PMLR, 18–24 Jul 2021. Ren H, Dai H, Dai B, Chen X, Yasunaga M, Sun H, Schuurmans D, Leskovec J, Zhou D. LEGO: latent execution-guided reasoning for multi-hop question answering on knowledge graphs. In: Meila M, Zhang T, editors. Proceedings of the 38th International Conference on Machine Learning, vol. 139 of Proceedings of Machine Learning Research. p. 8959–70. PMLR, 18–24 Jul 2021.
12.
Zurück zum Zitat Li L, Zhang M, Chao Z, Xiang J. Using context information to enhance simple question answering. World Wide Web. 2021;24(1):249–77.CrossRef Li L, Zhang M, Chao Z, Xiang J. Using context information to enhance simple question answering. World Wide Web. 2021;24(1):249–77.CrossRef
13.
Zurück zum Zitat Chen H, Ye F, Fan Y, He Z, Jing Y, Zhang K, Wang XS. Staged query graph generation based on answer type for question answering over knowledge base. Knowl-Based Syst. 2022;253:109576. Chen H, Ye F, Fan Y, He Z, Jing Y, Zhang K, Wang XS. Staged query graph generation based on answer type for question answering over knowledge base. Knowl-Based Syst. 2022;253:109576.
14.
Zurück zum Zitat Zhang Q, Weng X, Zhou G, Zhang Y, Huang JX. ARL: an adaptive reinforcement learning framework for complex question answering over knowledge base. Inf Process Manag. 2022;59(3):102933. Zhang Q, Weng X, Zhou G, Zhang Y, Huang JX. ARL: an adaptive reinforcement learning framework for complex question answering over knowledge base. Inf Process Manag. 2022;59(3):102933.
15.
Zurück zum Zitat Song L, Li J, Liu J, Yang Y, Shang X, Sun M. Answering knowledge-based visual questions via the exploration of question purpose. Pattern Recogn. 2023;133. Song L, Li J, Liu J, Yang Y, Shang X, Sun M. Answering knowledge-based visual questions via the exploration of question purpose. Pattern Recogn. 2023;133.
16.
Zurück zum Zitat Singh D, Reddy S, Hamilton W, Dyer C, Yogatama D. End-to-end training of multi-document reader and retriever for open-domain question answering. In: Ranzato M, Beygelzimer A, Dauphin Y, Liang PS, Vaughan JW, editors. Advances in Neural Information Processing Systems, vol. 34. Curran Associates, Inc.; 2021. p. 25968–81. Singh D, Reddy S, Hamilton W, Dyer C, Yogatama D. End-to-end training of multi-document reader and retriever for open-domain question answering. In: Ranzato M, Beygelzimer A, Dauphin Y, Liang PS, Vaughan JW, editors. Advances in Neural Information Processing Systems, vol. 34. Curran Associates, Inc.; 2021. p. 25968–81.
18.
Zurück zum Zitat Das R, Godbole A, Naik A, Tower E, Zaheer M, Hajishirzi H, Jia R, Mccallum A. Knowledge base question answering by case-based reasoning over subgraphs. In: Chaudhuri K, Jegelka S, Song L, Szepesvari C, Niu G, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, vol. 162 of Proceedings of Machine Learning Research. PMLR, 17–23 Jul 2022. p. 4777–93. Das R, Godbole A, Naik A, Tower E, Zaheer M, Hajishirzi H, Jia R, Mccallum A. Knowledge base question answering by case-based reasoning over subgraphs. In: Chaudhuri K, Jegelka S, Song L, Szepesvari C, Niu G, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, vol. 162 of Proceedings of Machine Learning Research. PMLR, 17–23 Jul 2022. p. 4777–93.
19.
Zurück zum Zitat Hsu H-H, Huang N-F. Xiao-Shih: a self-enriched question answering bot with machine learning on Chinese-based MOOCs. IEEE Trans Learn Technol. 2022;15(2):223–37.CrossRef Hsu H-H, Huang N-F. Xiao-Shih: a self-enriched question answering bot with machine learning on Chinese-based MOOCs. IEEE Trans Learn Technol. 2022;15(2):223–37.CrossRef
20.
Zurück zum Zitat Nakano Y, Kawano S, Yoshino K, Sudoh K, Nakamura S. Pseudo ambiguous and clarifying questions based on sentence structures toward clarifying question answering system. In Proceedings of the Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering, Dublin, Ireland, May 2022. p. 31–40. Association for Computational Linguistics. Nakano Y, Kawano S, Yoshino K, Sudoh K, Nakamura S. Pseudo ambiguous and clarifying questions based on sentence structures toward clarifying question answering system. In Proceedings of the Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering, Dublin, Ireland, May 2022. p. 31–40. Association for Computational Linguistics.
21.
Zurück zum Zitat Gomes J, de Mello RC, Ströele V, de Souza JF. A hereditary attentive template-based approach for complex knowledge base question answering systems. Expert Syst Appl. 2022;205:117725. Gomes J, de Mello RC, Ströele V, de Souza JF. A hereditary attentive template-based approach for complex knowledge base question answering systems. Expert Syst Appl. 2022;205:117725.
22.
Zurück zum Zitat Sovrano F, Vitali F. Explanatory artificial intelligence (YAI): human-centered explanations of explainable AI and complex data. Data Min Knowl Disc. 2022;1–28. Sovrano F, Vitali F. Explanatory artificial intelligence (YAI): human-centered explanations of explainable AI and complex data. Data Min Knowl Disc. 2022;1–28.
23.
Zurück zum Zitat Sachan DS, Patwary M, Shoeybi M, Kant N, Ping W, Hamilton WL, Catanzaro B. End-to-end training of neural retrievers for open-domain question answering. arXiv:2101.00408 [Preprint]. 2021. Available from: http://arxiv.org/abs/2101.00408. Sachan DS, Patwary M, Shoeybi M, Kant N, Ping W, Hamilton WL, Catanzaro B. End-to-end training of neural retrievers for open-domain question answering. arXiv:2101.00408 [Preprint]. 2021. Available from: http://​arxiv.​org/​abs/​2101.​00408.
24.
Zurück zum Zitat Alkhaldi T, Chu C, Kurohashi S. Flexibly focusing on supporting facts, using bridge links, and jointly training specialized modules for multi-hop question answering. IEEE/ACM Transactions on Audio, Speech, and Language Processing. 2021;29:3216–25.CrossRef Alkhaldi T, Chu C, Kurohashi S. Flexibly focusing on supporting facts, using bridge links, and jointly training specialized modules for multi-hop question answering. IEEE/ACM Transactions on Audio, Speech, and Language Processing. 2021;29:3216–25.CrossRef
25.
Zurück zum Zitat Wu W, Zhu Z, Qi J, Wang W, Zhang G, Liu P. A dynamic graph expansion network for multi-hop knowledge base question answering. Neurocomputing. 2022. Wu W, Zhu Z, Qi J, Wang W, Zhang G, Liu P. A dynamic graph expansion network for multi-hop knowledge base question answering. Neurocomputing. 2022.
26.
Zurück zum Zitat Hu J, Qian S, Fang Q, Xu C. Heterogeneous community question answering via social-aware multi-modal co-attention convolutional matching. IEEE Trans Multimedia. 2021;23:2321–34.CrossRef Hu J, Qian S, Fang Q, Xu C. Heterogeneous community question answering via social-aware multi-modal co-attention convolutional matching. IEEE Trans Multimedia. 2021;23:2321–34.CrossRef
27.
Zurück zum Zitat Qiu C, Zhou G, Cai Z, Søgaard A. A global-local attentive relation detection model for knowledge-based question answering. IEEE Transactions on Artificial Intelligence. 2021;2(2):200–12. Qiu C, Zhou G, Cai Z, Søgaard A. A global-local attentive relation detection model for knowledge-based question answering. IEEE Transactions on Artificial Intelligence. 2021;2(2):200–12.
28.
Zurück zum Zitat Aithal SG, Rao AB, Singh S. Automatic question-answer pairs generation and question similarity mechanism in question answering system. Appl Intell. 2021;51(11):8484–97. Aithal SG, Rao AB, Singh S. Automatic question-answer pairs generation and question similarity mechanism in question answering system. Appl Intell. 2021;51(11):8484–97.
29.
Zurück zum Zitat Etemadi R, Zihayat M, Feng K, Adelman J, Bagheri E. Embedding-based team formation for community question answering. Inf Sci. 2022. Etemadi R, Zihayat M, Feng K, Adelman J, Bagheri E. Embedding-based team formation for community question answering. Inf Sci. 2022.
30.
Zurück zum Zitat Li X, Cheng Y. Understanding the message passing in graph neural networks via power iteration clustering. Neural Netw. 2021;140:130–5.CrossRef Li X, Cheng Y. Understanding the message passing in graph neural networks via power iteration clustering. Neural Netw. 2021;140:130–5.CrossRef
31.
Zurück zum Zitat Figueroa A, Gómez-Pantoja C, Neumann G. Integrating heterogeneous sources for predicting question temporal anchors across Yahoo! Answers. Information Fusion. 2019;50:112–25. Figueroa A, Gómez-Pantoja C, Neumann G. Integrating heterogeneous sources for predicting question temporal anchors across Yahoo! Answers. Information Fusion. 2019;50:112–25.
32.
Zurück zum Zitat Wang Q, Wenjun W, Qi Y, Zhao Y. Deep Bayesian active learning for learning to rank: a case study in answer selection. IEEE Trans Knowl Data Eng. 2022;34(11):5251–62.CrossRef Wang Q, Wenjun W, Qi Y, Zhao Y. Deep Bayesian active learning for learning to rank: a case study in answer selection. IEEE Trans Knowl Data Eng. 2022;34(11):5251–62.CrossRef
33.
Zurück zum Zitat Yoo D, Kweon IS. Learning loss for active learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. p. 93–102. Yoo D, Kweon IS. Learning loss for active learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. p. 93–102.
34.
Zurück zum Zitat Feng WZ, Tang J. A ranking model for answer selection with deep matching features. Journal of Chinese Information Processing. 2019;33(1):118–24. Feng WZ, Tang J. A ranking model for answer selection with deep matching features. Journal of Chinese Information Processing. 2019;33(1):118–24.
35.
Zurück zum Zitat Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016. p. 785–94. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016. p. 785–94.
36.
Zurück zum Zitat Yang Y, Yih W-T, Meek C. WIKIQA: a challenge dataset for open-domain question answering. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015. p. 2013–18. Yang Y, Yih W-T, Meek C. WIKIQA: a challenge dataset for open-domain question answering. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015. p. 2013–18.
37.
Zurück zum Zitat Milne D, Witten IH. Learning to link with Wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management. 2008. p. 509–18. Milne D, Witten IH. Learning to link with Wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management. 2008. p. 509–18.
38.
Zurück zum Zitat Feng M, Xiang B, Glass MR, Wang L, Zhou B. Applying deep learning to answer selection: a study and an open task. In: 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU). IEEE; 2015. p. 813–20. Feng M, Xiang B, Glass MR, Wang L, Zhou B. Applying deep learning to answer selection: a study and an open task. In: 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU). IEEE; 2015. p. 813–20.
40.
Zurück zum Zitat Fang Z, Liu J, Li Y, Qiao Y, Hanqing L. Improving visual question answering using dropout and enhanced question encoder. Pattern Recogn. 2019;90:404–14.CrossRef Fang Z, Liu J, Li Y, Qiao Y, Hanqing L. Improving visual question answering using dropout and enhanced question encoder. Pattern Recogn. 2019;90:404–14.CrossRef
42.
Zurück zum Zitat Tay Y, Luu AT, Hui SC. Enabling efficient question answer retrieval via hyperbolic neural networks. CoRR abs/1707.07847. 2017. Tay Y, Luu AT, Hui SC. Enabling efficient question answer retrieval via hyperbolic neural networks. CoRR abs/1707.07847. 2017.
44.
Zurück zum Zitat Bian W, Li S, Yang Z, Chen G, Lin Z. A compare-aggregate model with dynamic-clip attention for answer selection. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 2017. p. 1987–90. Bian W, Li S, Yang Z, Chen G, Lin Z. A compare-aggregate model with dynamic-clip attention for answer selection. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 2017. p. 1987–90.
45.
Zurück zum Zitat Shen G, Yang Y, Deng Z-H. Inter-weighted alignment network for sentence pair modeling. In: Proceedings of the 2017 Conference On Empirical Methods in Natural Language Processing. 2017. p. 1179–89. Shen G, Yang Y, Deng Z-H. Inter-weighted alignment network for sentence pair modeling. In: Proceedings of the 2017 Conference On Empirical Methods in Natural Language Processing. 2017. p. 1179–89.
46.
Zurück zum Zitat Tran QH, Lai T, Haffari G, Zukerman I, Bui T, Bui H. The context-dependent additive recurrent neural net. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long Papers). 2018. p. 1274–83. Tran QH, Lai T, Haffari G, Zukerman I, Bui T, Bui H. The context-dependent additive recurrent neural net. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long Papers). 2018. p. 1274–83.
Metadaten
Titel
Multi-granularity Hierarchical Feature Extraction for Question-Answering Understanding
verfasst von
Xingguo Qin
Ya Zhou
Guimin Huang
Maolin Li
Jun Li
Publikationsdatum
26.12.2022
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 1/2023
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10102-7