Skip to main content

2021 | OriginalPaper | Buchkapitel

Multi-level Fusion Based Deep Convolutional Network for Image Quality Assessment

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Image quality assessment aims to design effective models to automatically predict the perceptual quality score of a given image that is consistent with human cognition. In this paper, we propose a novel end-to-end multi-level fusion based deep convolutional neural network for full-reference image quality assessment (FR-IQA), codenamed MF-IQA. In MF-IQA, we first extract features with the help of edge feature fusion for both distorted images and the corresponding reference images. Afterwards, we apply multi-level feature fusion to evaluate a number of local quality indices, and then they would be pooled into a global quality score. With the proposed multi-level fusion and edge feature fusion strategy, the input images and the corresponding feature maps can be better learned and thus help produce more accurate and meaningful visual perceptual predictions. The experimental results and statistical comparisons on three IQA datasets demonstrate that our framework achieves the state-of-the-art prediction accuracy in contrast to most existing algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bosse, S., Maniry, D., Müller, K.R., Wiegand, T., Samek, W.: Deep neural networks for no-reference and full-reference image quality assessment. IEEE TIP (2017) Bosse, S., Maniry, D., Müller, K.R., Wiegand, T., Samek, W.: Deep neural networks for no-reference and full-reference image quality assessment. IEEE TIP (2017)
2.
Zurück zum Zitat Bosse, S., Siekmann, M., Samek, W., Wiegand, T.: A perceptually relevant shearlet-based adaptation of the PSNR. In: IEEE ICIP (2017) Bosse, S., Siekmann, M., Samek, W., Wiegand, T.: A perceptually relevant shearlet-based adaptation of the PSNR. In: IEEE ICIP (2017)
3.
Zurück zum Zitat Canny, J.: A computational approach to edge detection. IEEE PAMI 8, 679–698 (1986)CrossRef Canny, J.: A computational approach to edge detection. IEEE PAMI 8, 679–698 (1986)CrossRef
5.
Zurück zum Zitat Ding, K., Ma, K., Wang, S., Simoncelli, E.P.: Image quality assessment: unifying structure and texture similarity. arXiv preprint arXiv:2004.07728 (2020) Ding, K., Ma, K., Wang, S., Simoncelli, E.P.: Image quality assessment: unifying structure and texture similarity. arXiv preprint arXiv:​2004.​07728 (2020)
6.
Zurück zum Zitat Gao, F., Wang, Y., Li, P., Tan, M., Yu, J., Zhu, Y.: Deepsim: deep similarity for image quality assessment. Neurocomputing (2017) Gao, F., Wang, Y., Li, P., Tan, M., Yu, J., Zhu, Y.: Deepsim: deep similarity for image quality assessment. Neurocomputing (2017)
7.
Zurück zum Zitat Girod, B.: What’s wrong with mean-squared error? Digital images and human vision (1993) Girod, B.: What’s wrong with mean-squared error? Digital images and human vision (1993)
8.
Zurück zum Zitat Larson, E.C., Chandler, D.M.: Most apparent distortion: full-reference image quality assessment and the role of strategy. SPIE IS&T J. Electron. Imaging (2010) Larson, E.C., Chandler, D.M.: Most apparent distortion: full-reference image quality assessment and the role of strategy. SPIE IS&T J. Electron. Imaging (2010)
10.
Zurück zum Zitat Ponomarenko, N., et al.: Color image database tid2013: peculiarities and preliminary results. In: IEEE EUVIP (2013) Ponomarenko, N., et al.: Color image database tid2013: peculiarities and preliminary results. In: IEEE EUVIP (2013)
11.
Zurück zum Zitat Prashnani, E., Cai, H., Mostofi, Y., Sen, P.: Pieapp: perceptual image-error assessment through pairwise preference. In: IEEE CVPR (2018) Prashnani, E., Cai, H., Mostofi, Y., Sen, P.: Pieapp: perceptual image-error assessment through pairwise preference. In: IEEE CVPR (2018)
12.
Zurück zum Zitat Sara, U., Akter, M., Uddin, M.S.: Image quality assessment through FSIM, SSIM, MSE and PSNR-a comparative study. JCC 07, 8–18 (2019)CrossRef Sara, U., Akter, M., Uddin, M.S.: Image quality assessment through FSIM, SSIM, MSE and PSNR-a comparative study. JCC 07, 8–18 (2019)CrossRef
13.
Zurück zum Zitat Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE TIP 15, 430–444 (2006) Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE TIP 15, 430–444 (2006)
14.
Zurück zum Zitat Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE TIP 15, 3440–3451 (2006) Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE TIP 15, 3440–3451 (2006)
15.
Zurück zum Zitat Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556 (2014)
16.
Zurück zum Zitat Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13, 600–612 (2004) Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13, 600–612 (2004)
17.
Zurück zum Zitat Wang, Z., Li, Q.: Information content weighting for perceptual image quality assessment. IEEE TIP 20, 1185–1198 (2010)MathSciNetMATH Wang, Z., Li, Q.: Information content weighting for perceptual image quality assessment. IEEE TIP 20, 1185–1198 (2010)MathSciNetMATH
18.
Zurück zum Zitat Xue, W., Zhang, L., Mou, X., Bovik, A.C.: Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE TIP 23, 684–695 (2013)MathSciNetMATH Xue, W., Zhang, L., Mou, X., Bovik, A.C.: Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE TIP 23, 684–695 (2013)MathSciNetMATH
19.
Zurück zum Zitat Zhang, L., Li, H.: Sr-sim: A fast and high performance IQA index based on spectral residual. In: IEEE ICIP (2012) Zhang, L., Li, H.: Sr-sim: A fast and high performance IQA index based on spectral residual. In: IEEE ICIP (2012)
20.
Zurück zum Zitat Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE TIP 20, 2378–2386 (2011)MathSciNetMATH Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE TIP 20, 2378–2386 (2011)MathSciNetMATH
Metadaten
Titel
Multi-level Fusion Based Deep Convolutional Network for Image Quality Assessment
verfasst von
Qianyu Guo
Jing Wen
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-68780-9_51