Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 2/2017

17.06.2016 | RESEARCH PAPER

Multi-material topology optimization using ordered SIMP interpolation

verfasst von: Wenjie Zuo, Kazuhiro Saitou

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper an ordered multi-material SIMP (solid isotropic material with penalization) interpolation is proposed to solve multi-material topology optimization problems without introducing any new variables. Power functions with scaling and translation coefficients are introduced to interpolate the elastic modulus and the cost properties for multiple materials with respect to the normalized density variables. Besides a mass constraint, a cost constraint is also considered in compliance minimization problems. A heuristic updating scheme of the design variables is derived from the Kuhn-Tucker optimality condition (OC). Since the proposed method does not rely on additional variables to represent material selection, the computational cost is independent of the number of materials considered. The iteration scheme is designed to jump across the discontinuous point of interpolation derivatives to make stable transition from one material phase to another. Numerical examples are included to demonstrate the proposed method. Because of its conceptual simplicity, the proposed ordered multi-material SIMP interpolation can be easily embedded into any existing single material SIMP topology optimization codes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidisc Optim 43(1):1–16CrossRefMATH Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidisc Optim 43(1):1–16CrossRefMATH
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRef
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenisation method. Comput Methods Appl Mech Eng 71(2):197–224CrossRefMATH Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenisation method. Comput Methods Appl Mech Eng 71(2):197–224CrossRefMATH
Zurück zum Zitat Bendsøe M, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9-10):635–654CrossRefMATH Bendsøe M, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9-10):635–654CrossRefMATH
Zurück zum Zitat Bendsøe M, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, BerlinMATH Bendsøe M, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, BerlinMATH
Zurück zum Zitat Blasques JP (2014) Multi-material topology optimization of laminated composite beams with eigenfrequency constraints. Compos Struct 111:45–55CrossRef Blasques JP (2014) Multi-material topology optimization of laminated composite beams with eigenfrequency constraints. Compos Struct 111:45–55CrossRef
Zurück zum Zitat Blasques JP, Stolpe M (2012) Multi-material topology optimization of laminated composite beam cross sections. Compos Struct 94(11):3278–3289CrossRef Blasques JP, Stolpe M (2012) Multi-material topology optimization of laminated composite beam cross sections. Compos Struct 94(11):3278–3289CrossRef
Zurück zum Zitat Díaz A, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10(1):40–45CrossRef Díaz A, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10(1):40–45CrossRef
Zurück zum Zitat Fredricson H (2005) Topology optimization of frame structures-joint penalty and material selection. Struct Multidisc Optim 30(3):193–200MathSciNetCrossRef Fredricson H (2005) Topology optimization of frame structures-joint penalty and material selection. Struct Multidisc Optim 30(3):193–200MathSciNetCrossRef
Zurück zum Zitat Guest J, Asadpoure A, Ha S (2011) Eliminating beta-continuation from Heaviside projection and density filter algorithms. Struct Multidisc Optim 44(4):443–453MathSciNetCrossRefMATH Guest J, Asadpoure A, Ha S (2011) Eliminating beta-continuation from Heaviside projection and density filter algorithms. Struct Multidisc Optim 44(4):443–453MathSciNetCrossRefMATH
Zurück zum Zitat Guo X, Zhang WS, Wang MY, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200(47-48):3439–3452MathSciNetCrossRefMATH Guo X, Zhang WS, Wang MY, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200(47-48):3439–3452MathSciNetCrossRefMATH
Zurück zum Zitat Guo X, Zhang W, Zhong W (2014a) Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. J Appl Mech 81(8):081009CrossRef Guo X, Zhang W, Zhong W (2014a) Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. J Appl Mech 81(8):081009CrossRef
Zurück zum Zitat Guo X, Zhang W, Zhong W (2014b) Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Eng 272:354–378MathSciNetCrossRefMATH Guo X, Zhang W, Zhong W (2014b) Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Eng 272:354–378MathSciNetCrossRefMATH
Zurück zum Zitat Guo X, Zhang W, Zhong W (2014c) Stress-related topology optimization of continuum structures involving multi-phase materials. Comput Methods Appl Mech Eng 268:632–655MathSciNetCrossRefMATH Guo X, Zhang W, Zhong W (2014c) Stress-related topology optimization of continuum structures involving multi-phase materials. Comput Methods Appl Mech Eng 268:632–655MathSciNetCrossRefMATH
Zurück zum Zitat Hvejsel C, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidisc Optim 43(6):811–825CrossRefMATH Hvejsel C, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidisc Optim 43(6):811–825CrossRefMATH
Zurück zum Zitat Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidisc Optim 50(6):1175–1196MathSciNetCrossRef Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidisc Optim 50(6):1175–1196MathSciNetCrossRef
Zurück zum Zitat Luo Z, Tong L, Luo J (2009) Design of piezoelectric actuators using a multiphase level set method of piecewise constants. J Comput Phys 228(7):2643–2659MathSciNetCrossRefMATH Luo Z, Tong L, Luo J (2009) Design of piezoelectric actuators using a multiphase level set method of piecewise constants. J Comput Phys 228(7):2643–2659MathSciNetCrossRefMATH
Zurück zum Zitat Ramani A (2009) A pseudo-sensitivity based discrete-variable approach to structural topology optimization with multiple materials. Struct Multidisc Optim 41:913–934CrossRef Ramani A (2009) A pseudo-sensitivity based discrete-variable approach to structural topology optimization with multiple materials. Struct Multidisc Optim 41:913–934CrossRef
Zurück zum Zitat Ramani A (2011) Multi-material topology optimization with strength constraints. Struct Multidisc Optim 43(5):597–615CrossRef Ramani A (2011) Multi-material topology optimization with strength constraints. Struct Multidisc Optim 43(5):597–615CrossRef
Zurück zum Zitat Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524CrossRef Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524CrossRef
Zurück zum Zitat Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21(2):120–127MathSciNetCrossRef Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21(2):120–127MathSciNetCrossRef
Zurück zum Zitat Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4-5):401–424CrossRef Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4-5):401–424CrossRef
Zurück zum Zitat Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRef Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRef
Zurück zum Zitat Tavakoli R (2014) Multimaterial topology optimization by volume constrained Allen-Cahn system and regularized projected steepest descent method. Comput Methods Appl Mech Eng 276:534–565MathSciNetCrossRef Tavakoli R (2014) Multimaterial topology optimization by volume constrained Allen-Cahn system and regularized projected steepest descent method. Comput Methods Appl Mech Eng 276:534–565MathSciNetCrossRef
Zurück zum Zitat Tavakoli R, Mohseni S (2013) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation. Struct Multidisc Optim 49(4):621–642MathSciNetCrossRef Tavakoli R, Mohseni S (2013) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation. Struct Multidisc Optim 49(4):621–642MathSciNetCrossRef
Zurück zum Zitat Wang M, Wang X (2004) "Color" level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6-8):469–496MathSciNetCrossRefMATH Wang M, Wang X (2004) "Color" level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6-8):469–496MathSciNetCrossRefMATH
Zurück zum Zitat Wang M, Zhou S (2004) Phase field: a variational method for structural topology optimization. Comput Model Eng Sci 6(6):547–566MathSciNetMATH Wang M, Zhou S (2004) Phase field: a variational method for structural topology optimization. Comput Model Eng Sci 6(6):547–566MathSciNetMATH
Zurück zum Zitat Wang MY, Wang MY, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246MathSciNetCrossRefMATH Wang MY, Wang MY, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246MathSciNetCrossRefMATH
Zurück zum Zitat Wei P, Wang M (2009) Piecewise constant level set method for structural topology optimization. Int J Numer Meth Eng 78(4):379–402MathSciNetCrossRefMATH Wei P, Wang M (2009) Piecewise constant level set method for structural topology optimization. Int J Numer Meth Eng 78(4):379–402MathSciNetCrossRefMATH
Zurück zum Zitat Xie Y, Steven G (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896CrossRef Xie Y, Steven G (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896CrossRef
Zurück zum Zitat Yin L, Ananthasuresh GK (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidisc Optim 23(1):49–62CrossRef Yin L, Ananthasuresh GK (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidisc Optim 23(1):49–62CrossRef
Zurück zum Zitat Zhang W, Yuan J, Zhang J, Guo X (2016a) A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Struct Multidisc Optim:1–18. doi:10.1007/s00158-015-1372-3 Zhang W, Yuan J, Zhang J, Guo X (2016a) A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Struct Multidisc Optim:1–18. doi:10.​1007/​s00158-015-1372-3
Zurück zum Zitat Zhang W, Zhang J, Guo X (2016a) Explicit structural topology optimization via moving morphable components-a revival of shape optimization. J Appl Mech 83:041010CrossRef Zhang W, Zhang J, Guo X (2016a) Explicit structural topology optimization via moving morphable components-a revival of shape optimization. J Appl Mech 83:041010CrossRef
Zurück zum Zitat Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89(1):309–336CrossRef Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89(1):309–336CrossRef
Zurück zum Zitat Zhou S, Wang M (2007) Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition. Struct Multidisc Optim 33(2):89–111MathSciNetCrossRefMATH Zhou S, Wang M (2007) Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition. Struct Multidisc Optim 33(2):89–111MathSciNetCrossRefMATH
Zurück zum Zitat Zhou M, YK S, HL T (2001) Checkerboard and minimum member size control in topology optimization. Struct Multidisc Optim 21(2):152–158CrossRef Zhou M, YK S, HL T (2001) Checkerboard and minimum member size control in topology optimization. Struct Multidisc Optim 21(2):152–158CrossRef
Metadaten
Titel
Multi-material topology optimization using ordered SIMP interpolation
verfasst von
Wenjie Zuo
Kazuhiro Saitou
Publikationsdatum
17.06.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 2/2017
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-016-1513-3

Weitere Artikel der Ausgabe 2/2017

Structural and Multidisciplinary Optimization 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.