Skip to main content
Erschienen in:
Buchtitelbild

2021 | OriginalPaper | Buchkapitel

1. Multi-microgrids with a Frequency Regulation-Based V2G Technology: Systems Analysis, Modeling, and Control

verfasst von : Meysam Gheisarnejad, Mohammad-Hassan Khooban

Erschienen in: Design, Control, and Operation of Microgrids in Smart Grids

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents novel structured single-input interval type-2 fuzzy logic controllers (SI-IT2-FLCs) for the frequency damping of multi-microgrids (MMGs), whereas the application of electric vehicles (EVs) is considered in this context. For this purpose, a new SI-IT2-fuzzy PD/fuzzy PI (SI-IT2-FPD/FPI) controller is designed on two levels. Initially, an improved whale optimization algorithm, called IWOA, is adopted to adjust the setting of the gains embedded in the FPD/FPI section effectively. Then, the impact of the footprint of uncertainty (FOU), to offer extra design freedom, on control surface generation of SI-IT2-FLC has been investigated. In this way, various control surfaces were generated by varying a single coefficient which forms the FOU. Lastly, by adopting hardware-in-the-loop (HIL) simulator, the feasibility and usefulness of the suggested framework are verified from a real-time perspective.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Gheisarnejad, M.-H. Khooban, T. Dragičevié, The future 5G network-based secondary load frequency control in shipboard microgrids. IEEE J. Emerg. Select. Topics Power Electr. 8, 836–844 (2019)CrossRef M. Gheisarnejad, M.-H. Khooban, T. Dragičevié, The future 5G network-based secondary load frequency control in shipboard microgrids. IEEE J. Emerg. Select. Topics Power Electr. 8, 836–844 (2019)CrossRef
2.
Zurück zum Zitat I. Pan, S. Das, Fractional order AGC for distributed energy resources using robust optimization. IEEE Trans. Smart Grid 7, 2175–2186 (2015)CrossRef I. Pan, S. Das, Fractional order AGC for distributed energy resources using robust optimization. IEEE Trans. Smart Grid 7, 2175–2186 (2015)CrossRef
3.
Zurück zum Zitat M. Gheisarnejad, M.H. Khooban, Secondary load frequency control for multi-microgrids: HiL real-time simulation. Soft. Comput. 23, 5785–5798 (2019)CrossRef M. Gheisarnejad, M.H. Khooban, Secondary load frequency control for multi-microgrids: HiL real-time simulation. Soft. Comput. 23, 5785–5798 (2019)CrossRef
4.
Zurück zum Zitat M.H. Khooban, M. Gheisarnejad, A novel deep reinforcement learning controller based type-II fuzzy system: Frequency regulation in microgrids. IEEE Trans. Emerg. Topics Comput. Intel. (2020) M.H. Khooban, M. Gheisarnejad, A novel deep reinforcement learning controller based type-II fuzzy system: Frequency regulation in microgrids. IEEE Trans. Emerg. Topics Comput. Intel. (2020)
5.
Zurück zum Zitat M.-R. Chen, G.-Q. Zeng, Y.-X. Dai, K.-D. Lu, D.-Q. Bi, Fractional-Order model predictive frequency control of an islanded microgrid. Energies, 12, 84, (2019) M.-R. Chen, G.-Q. Zeng, Y.-X. Dai, K.-D. Lu, D.-Q. Bi, Fractional-Order model predictive frequency control of an islanded microgrid. Energies, 12, 84, (2019)
6.
Zurück zum Zitat M.H. Khooban, M. Gheisarnejad, Islanded microgrid frequency regulations concerning the integration of tidal power units: Real-time implementation. IEEE Trans. Circuit Syst. II Express Briefs 67, 1099–1103 (2019)CrossRef M.H. Khooban, M. Gheisarnejad, Islanded microgrid frequency regulations concerning the integration of tidal power units: Real-time implementation. IEEE Trans. Circuit Syst. II Express Briefs 67, 1099–1103 (2019)CrossRef
7.
Zurück zum Zitat M. Gheisarnejad, P. Karimaghaee, J. Boudjadar, M.-H. Khooban, Real-time cellular wireless sensor testbed for frequency regulation in smart grids. IEEE Sensors J. 19, 11656–11665 (2019)CrossRef M. Gheisarnejad, P. Karimaghaee, J. Boudjadar, M.-H. Khooban, Real-time cellular wireless sensor testbed for frequency regulation in smart grids. IEEE Sensors J. 19, 11656–11665 (2019)CrossRef
8.
Zurück zum Zitat I. Pan, S. Das, Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans. 62, 19–29 (2016)CrossRef I. Pan, S. Das, Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans. 62, 19–29 (2016)CrossRef
9.
Zurück zum Zitat K.S. Rajesh, S.S. Dash, Load frequency control of autonomous power system using adaptive fuzzy based PID controller optimized on improved sine cosine algorithm. J. Ambient. Intell. Humaniz. Comput. 10, 2361–2373 (2019)CrossRef K.S. Rajesh, S.S. Dash, Load frequency control of autonomous power system using adaptive fuzzy based PID controller optimized on improved sine cosine algorithm. J. Ambient. Intell. Humaniz. Comput. 10, 2361–2373 (2019)CrossRef
10.
Zurück zum Zitat M.H. Fini, M.E.H. Golshan, Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables. Electr. Power Syst. Res. 154, 13–22 (2018)CrossRef M.H. Fini, M.E.H. Golshan, Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables. Electr. Power Syst. Res. 154, 13–22 (2018)CrossRef
11.
Zurück zum Zitat H. Wang, G. Zeng, Y. Dai, D. Bi, J. Sun, X. Xie, Design of a fractional order frequency PID controller for an islanded microgrid: A multi-objective extremal optimization method. Energies 10, 1502 (2017)CrossRef H. Wang, G. Zeng, Y. Dai, D. Bi, J. Sun, X. Xie, Design of a fractional order frequency PID controller for an islanded microgrid: A multi-objective extremal optimization method. Energies 10, 1502 (2017)CrossRef
12.
Zurück zum Zitat M.H. Khooban, T. Niknam, M. Sha-Sadeghi, Speed control of electrical vehicles: A time-varying proportional–integral controller-based type-2 fuzzy logic. IET Sci. Measur. Technol. 10, 185–192 (2016)CrossRef M.H. Khooban, T. Niknam, M. Sha-Sadeghi, Speed control of electrical vehicles: A time-varying proportional–integral controller-based type-2 fuzzy logic. IET Sci. Measur. Technol. 10, 185–192 (2016)CrossRef
13.
Zurück zum Zitat M. Rahmani-Andebili, M. Bonamente, J.A. Miller, Charging management of plug-in electric vehicles in San Francisco applying Monte Carlo Markov chain and stochastic model predictive control and considering renewables and drag force. IET Gener. Trans. Distrib. (2020) M. Rahmani-Andebili, M. Bonamente, J.A. Miller, Charging management of plug-in electric vehicles in San Francisco applying Monte Carlo Markov chain and stochastic model predictive control and considering renewables and drag force. IET Gener. Trans. Distrib. (2020)
14.
Zurück zum Zitat M. Rahmani-Andebili, M. Fotuhi-Firuzabad, An adaptive approach for PEVs charging management and reconfiguration of electrical distribution system penetrated by renewables. IEEE Trans. Ind. Inf. 14, 2001–2010 (2017)CrossRef M. Rahmani-Andebili, M. Fotuhi-Firuzabad, An adaptive approach for PEVs charging management and reconfiguration of electrical distribution system penetrated by renewables. IEEE Trans. Ind. Inf. 14, 2001–2010 (2017)CrossRef
15.
Zurück zum Zitat M. Rahmani-Andebili, Studying the effects of plug-in electric vehicles on the real power markets demand considering the technical and social aspects, in Planning and Operation of Plug-In Electric Vehicles (Springer, 2019), pp. 1–21 M. Rahmani-Andebili, Studying the effects of plug-in electric vehicles on the real power markets demand considering the technical and social aspects, in Planning and Operation of Plug-In Electric Vehicles (Springer, 2019), pp. 1–21
16.
Zurück zum Zitat M.-H. Khooban, M. Gheisarnejad, N. Vafamand, J. Boudjadar, Electric vehicle power propulsion system control based on time-varying fractional calculus: Implementation and experimental results. IEEE Trans. Intel. Vehic. 4, 255–264 (2019)CrossRef M.-H. Khooban, M. Gheisarnejad, N. Vafamand, J. Boudjadar, Electric vehicle power propulsion system control based on time-varying fractional calculus: Implementation and experimental results. IEEE Trans. Intel. Vehic. 4, 255–264 (2019)CrossRef
17.
Zurück zum Zitat M. Rahmani-Andebili, Spinning reserve capacity provision by the optimal fleet management of plug-in electric vehicles considering the technical and social aspects, in Planning and Operation of Plug-In Electric Vehicles (Springer, 2019), pp. 49–74 M. Rahmani-Andebili, Spinning reserve capacity provision by the optimal fleet management of plug-in electric vehicles considering the technical and social aspects, in Planning and Operation of Plug-In Electric Vehicles (Springer, 2019), pp. 49–74
18.
Zurück zum Zitat S. Falahati, S. A. Taher, M. Shahidehpour, Grid secondary frequency control by optimized fuzzy control of electric vehicles. IEEE Trans. Smart Grid (2017) S. Falahati, S. A. Taher, M. Shahidehpour, Grid secondary frequency control by optimized fuzzy control of electric vehicles. IEEE Trans. Smart Grid (2017)
19.
Zurück zum Zitat T. Goya, E. Omine, Y. Kinjyo, T. Senjyu, A. Yona, N. Urasaki, et al., Frequency control in isolated island by using parallel operated battery systems applying H∞ control theory based on droop characteristics. IET Renew. Power Gener. 5, 160–166 (2011)CrossRef T. Goya, E. Omine, Y. Kinjyo, T. Senjyu, A. Yona, N. Urasaki, et al., Frequency control in isolated island by using parallel operated battery systems applying H∞ control theory based on droop characteristics. IET Renew. Power Gener. 5, 160–166 (2011)CrossRef
20.
Zurück zum Zitat J. Yang, Z. Zeng, Y. Tang, J. Yan, H. He, Y. Wu, Load frequency control in isolated micro-grids with electrical vehicles based on multivariable generalized predictive theory. Energies 8, 2145–2164 (2015)CrossRef J. Yang, Z. Zeng, Y. Tang, J. Yan, H. He, Y. Wu, Load frequency control in isolated micro-grids with electrical vehicles based on multivariable generalized predictive theory. Energies 8, 2145–2164 (2015)CrossRef
21.
Zurück zum Zitat S. Kayalvizhi, D.M.V. Kumar, Load frequency control of an isolated micro grid using fuzzy adaptive model predictive control. IEEE Access 5, 16241–16251 (2017)CrossRef S. Kayalvizhi, D.M.V. Kumar, Load frequency control of an isolated micro grid using fuzzy adaptive model predictive control. IEEE Access 5, 16241–16251 (2017)CrossRef
22.
Zurück zum Zitat H. Bevrani, F. Habibi, P. Babahajyani, M. Watanabe, Y. Mitani, Intelligent frequency control in an AC microgrid: Online PSO-based fuzzy tuning approach. IEEE Trans. Smart Grid 3, 1935–1944 (2012)CrossRef H. Bevrani, F. Habibi, P. Babahajyani, M. Watanabe, Y. Mitani, Intelligent frequency control in an AC microgrid: Online PSO-based fuzzy tuning approach. IEEE Trans. Smart Grid 3, 1935–1944 (2012)CrossRef
23.
Zurück zum Zitat M.-H. Khooban, T. Niknam, M. Shasadeghi, T. Dragicevic, F. Blaabjerg, Load frequency control in microgrids based on a stochastic noninteger controller. IEEE Trans. Sustain. Energy 9, 853–861 (2018)CrossRef M.-H. Khooban, T. Niknam, M. Shasadeghi, T. Dragicevic, F. Blaabjerg, Load frequency control in microgrids based on a stochastic noninteger controller. IEEE Trans. Sustain. Energy 9, 853–861 (2018)CrossRef
24.
Zurück zum Zitat K. Nosrati, H.R. Mansouri, H. Saboori, Fractional-order PID controller design of frequency deviation in a hybrid renewable energy generation and storage system. CIRED-Open Access Proc. J. 2017, 1148–1152 (2017)CrossRef K. Nosrati, H.R. Mansouri, H. Saboori, Fractional-order PID controller design of frequency deviation in a hybrid renewable energy generation and storage system. CIRED-Open Access Proc. J. 2017, 1148–1152 (2017)CrossRef
25.
Zurück zum Zitat M.-H. Khooban, Secondary load frequency control of time-delay stand-alone microgrids with electric vehicles. IEEE Trans. Ind. Electron. 65, 7416–7422 (2018)CrossRef M.-H. Khooban, Secondary load frequency control of time-delay stand-alone microgrids with electric vehicles. IEEE Trans. Ind. Electron. 65, 7416–7422 (2018)CrossRef
26.
Zurück zum Zitat J. Pahasa, I. Ngamroo, Coordinated control of wind turbine blade pitch angle and PHEVs using MPCs for load frequency control of microgrid. IEEE Syst. J. 10, 97–105 (2016)CrossRef J. Pahasa, I. Ngamroo, Coordinated control of wind turbine blade pitch angle and PHEVs using MPCs for load frequency control of microgrid. IEEE Syst. J. 10, 97–105 (2016)CrossRef
27.
Zurück zum Zitat M. Datta, T. Senjyu, Fuzzy control of distributed PV inverters/energy storage systems/electric vehicles for frequency regulation in a large power system. IEEE Trans. Smart Grid 4, 479–488 (2013)CrossRef M. Datta, T. Senjyu, Fuzzy control of distributed PV inverters/energy storage systems/electric vehicles for frequency regulation in a large power system. IEEE Trans. Smart Grid 4, 479–488 (2013)CrossRef
28.
Zurück zum Zitat M. Rahmani-Andebili, Studying the effects of optimal fleet management of plug-in electric vehicles on the unit commitment problem considering the technical and social aspects, in Planning and Operation of Plug-In Electric Vehicles (Springer, 2019), pp. 23–47 M. Rahmani-Andebili, Studying the effects of optimal fleet management of plug-in electric vehicles on the unit commitment problem considering the technical and social aspects, in Planning and Operation of Plug-In Electric Vehicles (Springer, 2019), pp. 23–47
29.
Zurück zum Zitat A.A. El-Fergany, M.A. El-Hameed, Efficient frequency controllers for autonomous two-area hybrid microgrid system using social-spider optimiser. IET Gener. Transm. Distrib. 11, 637–648 (2017)CrossRef A.A. El-Fergany, M.A. El-Hameed, Efficient frequency controllers for autonomous two-area hybrid microgrid system using social-spider optimiser. IET Gener. Transm. Distrib. 11, 637–648 (2017)CrossRef
30.
Zurück zum Zitat S.K. Pandey, S.R. Mohanty, N. Kishor, J.P.S. Catalão, Frequency regulation in hybrid power systems using particle swarm optimization and linear matrix inequalities based robust controller design. Int. J. Electr. Power Energy Syst. 63, 887–900 (2014)CrossRef S.K. Pandey, S.R. Mohanty, N. Kishor, J.P.S. Catalão, Frequency regulation in hybrid power systems using particle swarm optimization and linear matrix inequalities based robust controller design. Int. J. Electr. Power Energy Syst. 63, 887–900 (2014)CrossRef
31.
Zurück zum Zitat M.-H. Khooban, T. Niknam, F. Blaabjerg, P. Davari, T. Dragicevic, A robust adaptive load frequency control for micro-grids. ISA Trans. 65, 220–229 (2016)CrossRef M.-H. Khooban, T. Niknam, F. Blaabjerg, P. Davari, T. Dragicevic, A robust adaptive load frequency control for micro-grids. ISA Trans. 65, 220–229 (2016)CrossRef
32.
Zurück zum Zitat M.H. Khooban, T. Niknam, F. Blaabjerg, T. Dragičević, A new load frequency control strategy for micro-grids with considering electrical vehicles. Electr. Power Syst. Res. 143, 585–598 (2017)CrossRef M.H. Khooban, T. Niknam, F. Blaabjerg, T. Dragičević, A new load frequency control strategy for micro-grids with considering electrical vehicles. Electr. Power Syst. Res. 143, 585–598 (2017)CrossRef
33.
Zurück zum Zitat H. Bevrani, M.R. Feizi, S. Ataee, Robust frequency control in an islanded microgrid: Hinf and μ-synthesis approaches. IEEE Trans. Smart Grid 7, 706–717 (2016) H. Bevrani, M.R. Feizi, S. Ataee, Robust frequency control in an islanded microgrid: Hinf and μ-synthesis approaches. IEEE Trans. Smart Grid 7, 706–717 (2016)
34.
Zurück zum Zitat K.S. Rajesh, S.S. Dash, Load frequency control of autonomous power system using adaptive fuzzy based PID controller optimized on improved sine cosine algorithm. J. Ambient. Intell. Humaniz. Comput., 1–13 (2018) K.S. Rajesh, S.S. Dash, Load frequency control of autonomous power system using adaptive fuzzy based PID controller optimized on improved sine cosine algorithm. J. Ambient. Intell. Humaniz. Comput., 1–13 (2018)
35.
Zurück zum Zitat A. Sarabakha, C. Fu, E. Kayacan, T. Kumbasar, Type-2 fuzzy logic controllers made even simpler: From design to deployment for UAVs. IEEE Trans. Ind. Electron. 65, 5069–5077 (2018)CrossRef A. Sarabakha, C. Fu, E. Kayacan, T. Kumbasar, Type-2 fuzzy logic controllers made even simpler: From design to deployment for UAVs. IEEE Trans. Ind. Electron. 65, 5069–5077 (2018)CrossRef
36.
Zurück zum Zitat R. Heydari, M. Gheisarnejad, M.H. Khooban, T. Dragicevic, F. Blaabjerg, Robust and fast voltage-source-converter (VSC) control for naval shipboard microgrids. IEEE Trans. Power Electron. 34, 8299–8303 (2019)CrossRef R. Heydari, M. Gheisarnejad, M.H. Khooban, T. Dragicevic, F. Blaabjerg, Robust and fast voltage-source-converter (VSC) control for naval shipboard microgrids. IEEE Trans. Power Electron. 34, 8299–8303 (2019)CrossRef
37.
Zurück zum Zitat M. Gheisarnejad, J. Boudjadar, M.-H. Khooban, A new adaptive type-II fuzzy-based deep reinforcement learning control: Fuel cell air-feed sensors control. IEEE Sensors J. 19, 9081–9089 (2019)CrossRef M. Gheisarnejad, J. Boudjadar, M.-H. Khooban, A new adaptive type-II fuzzy-based deep reinforcement learning control: Fuel cell air-feed sensors control. IEEE Sensors J. 19, 9081–9089 (2019)CrossRef
38.
Zurück zum Zitat M. Gheisarnejad, H. Mohammadi-Moghadam, J. Boudjadar, M.H. Khooban, Active power sharing and frequency recovery control in an islanded microgrid with nonlinear load and nondispatchable DG. IEEE Syst. J. 14, 1058–1068 (2019)CrossRef M. Gheisarnejad, H. Mohammadi-Moghadam, J. Boudjadar, M.H. Khooban, Active power sharing and frequency recovery control in an islanded microgrid with nonlinear load and nondispatchable DG. IEEE Syst. J. 14, 1058–1068 (2019)CrossRef
39.
Zurück zum Zitat A. Sarabakha, C. Fu, E. Kayacan, T. Kumbasar, Type-2 fuzzy logic controllers made even simpler: From design to deployment for UAVs. IEEE Trans. Ind. Electron. 65, 5069–5077 (2017)CrossRef A. Sarabakha, C. Fu, E. Kayacan, T. Kumbasar, Type-2 fuzzy logic controllers made even simpler: From design to deployment for UAVs. IEEE Trans. Ind. Electron. 65, 5069–5077 (2017)CrossRef
40.
Zurück zum Zitat T. Kumbasar, Robust stability analysis and systematic design of single-input interval type-2 fuzzy logic controllers. IEEE Trans. Fuzzy Syst. 24, 675–694 (2016)CrossRef T. Kumbasar, Robust stability analysis and systematic design of single-input interval type-2 fuzzy logic controllers. IEEE Trans. Fuzzy Syst. 24, 675–694 (2016)CrossRef
41.
Zurück zum Zitat M. Mehndiratta, E. Kayacan, T. Kumbasar, Design and experimental validation of single input type-2 fuzzy PID controllers as applied to 3 DOF helicopter testbed, in 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2016, pp. 1584–1591 M. Mehndiratta, E. Kayacan, T. Kumbasar, Design and experimental validation of single input type-2 fuzzy PID controllers as applied to 3 DOF helicopter testbed, in 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2016, pp. 1584–1591
42.
Zurück zum Zitat T. Kumbasar, H. Hagras, A gradient descent based online tuning mechanism for PI type single input interval type-2 fuzzy logic controllers, 1–6 T. Kumbasar, H. Hagras, A gradient descent based online tuning mechanism for PI type single input interval type-2 fuzzy logic controllers, 1–6
43.
Zurück zum Zitat S. Mirjalili, A. Lewis, The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)CrossRef S. Mirjalili, A. Lewis, The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)CrossRef
44.
Zurück zum Zitat M. Gheisarnejad, P. Karimaghaee, J. Boudjadar, M.-H. Khooban, Real-time cellular wireless sensor testbed for frequency regulation in smart grids. IEEE Sensors J. (2019) M. Gheisarnejad, P. Karimaghaee, J. Boudjadar, M.-H. Khooban, Real-time cellular wireless sensor testbed for frequency regulation in smart grids. IEEE Sensors J. (2019)
45.
Zurück zum Zitat G.-Q. Zeng, J. Chen, L.-M. Li, M.-R. Chen, L. Wu, Y.-X. Dai, et al., An improved multi-objective population-based extremal optimization algorithm with polynomial mutation. Inf. Sci. 330, 49–73 (2016)CrossRef G.-Q. Zeng, J. Chen, L.-M. Li, M.-R. Chen, L. Wu, Y.-X. Dai, et al., An improved multi-objective population-based extremal optimization algorithm with polynomial mutation. Inf. Sci. 330, 49–73 (2016)CrossRef
46.
Zurück zum Zitat Z. Seif, M.B. Ahmadi, An opposition-based algorithm for function optimization. Eng. Appl. Artif. Intell. 37, 293–306 (2015)CrossRef Z. Seif, M.B. Ahmadi, An opposition-based algorithm for function optimization. Eng. Appl. Artif. Intell. 37, 293–306 (2015)CrossRef
47.
Zurück zum Zitat I. Pan, S. Das, Kriging based surrogate modeling for fractional order control of microgrids. IEEE Trans. Smart Grid 6, 36–44 (2015)CrossRef I. Pan, S. Das, Kriging based surrogate modeling for fractional order control of microgrids. IEEE Trans. Smart Grid 6, 36–44 (2015)CrossRef
48.
Zurück zum Zitat M.-H. Khooban, T. Dragicevic, F. Blaabjerg, M. Delimar, Shipboard microgrids: A novel approach to load frequency control. IEEE Trans. Sustain. Energy 9, 843–852 (2018)CrossRef M.-H. Khooban, T. Dragicevic, F. Blaabjerg, M. Delimar, Shipboard microgrids: A novel approach to load frequency control. IEEE Trans. Sustain. Energy 9, 843–852 (2018)CrossRef
49.
Zurück zum Zitat V. Kumar, K.P.S. Rana, P. Mishra, Robust speed control of hybrid electric vehicle using fractional order fuzzy PD and PI controllers in cascade control loop. J. Franklin Inst. 353, 1713–1741 (2016)MathSciNetCrossRef V. Kumar, K.P.S. Rana, P. Mishra, Robust speed control of hybrid electric vehicle using fractional order fuzzy PD and PI controllers in cascade control loop. J. Franklin Inst. 353, 1713–1741 (2016)MathSciNetCrossRef
50.
Zurück zum Zitat H. Zhang, Y. Zhang, C. Yin, Hardware-in-the-loop simulation of robust mode transition control for a series–parallel hybrid electric vehicle. IEEE Trans. Veh. Technol. 65, 1059–1069 (2016)CrossRef H. Zhang, Y. Zhang, C. Yin, Hardware-in-the-loop simulation of robust mode transition control for a series–parallel hybrid electric vehicle. IEEE Trans. Veh. Technol. 65, 1059–1069 (2016)CrossRef
Metadaten
Titel
Multi-microgrids with a Frequency Regulation-Based V2G Technology: Systems Analysis, Modeling, and Control
verfasst von
Meysam Gheisarnejad
Mohammad-Hassan Khooban
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-64631-8_1