Skip to main content

2020 | OriginalPaper | Buchkapitel

Multi-objective Cuckoo Algorithm for Mobile Devices Network Architecture Search

verfasst von : Nan Zhang, Jianzong Wang, Jian Yang, Xiaoyang Qu, Jing Xiao

Erschienen in: Artificial Neural Networks and Machine Learning – ICANN 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The network architecture search technique is nowadays becoming the next generation paradigm of architectural engineering, which could free experts from trials and errors while achieving state-of-the-art performances in lots of applications such as image classification and language modeling. It is immensely crucial for deploying deep networks on a wide range of mobile devices with limited computing resources to provide more flexible service. In this paper, a novel multi-objective oriented algorithm called MOCS-Net for mobile devices network architecture search is proposed. In particular, the search space is compact and flexible which leverages good virtues from efficient mobile CNNs and is block-wise constructed by different stacked blocks. Moreover, an enhanced multi-objective cuckoo algorithm is incorporated, in which mutation is achieved by Lévy flights which are performed at the block level. Experimental results suggest that MOCS-Net could find competitive neural architectures on ImageNet with a better trade-off among various competing objectives compared with other state-of-the-art methods. Meanwhile, these results show the effectiveness of proposed MOCS-Net and the promise to further the use of MOCS-Net in various deep-learning paradigms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. In: 5th International Conference on Learning Representations, April 2017 Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. In: 5th International Conference on Learning Representations, April 2017
2.
Zurück zum Zitat Cai, H., Chen, T., Zhang, W., Yu, Y., Wang, J.: Efficient architecture search by network transformation. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, pp. 2787–2794 (2018) Cai, H., Chen, T., Zhang, W., Yu, Y., Wang, J.: Efficient architecture search by network transformation. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, pp. 2787–2794 (2018)
3.
Zurück zum Zitat Cai, H., Zhu, L., Han, S.: ProxylessNAS: direct neural architecture search on target task and hardware. In: 7th International Conference on Learning Representations, May 2019 Cai, H., Zhu, L., Han, S.: ProxylessNAS: direct neural architecture search on target task and hardware. In: 7th International Conference on Learning Representations, May 2019
4.
Zurück zum Zitat Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRef Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRef
5.
Zurück zum Zitat Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009) Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
6.
Zurück zum Zitat Elsken, T., Metzen, J.H., Hutter, F.: Efficient multi-objective neural architecture search via Lamarckian evolution. In: 7th International Conference on Learning Representations, May 2019 Elsken, T., Metzen, J.H., Hutter, F.: Efficient multi-objective neural architecture search via Lamarckian evolution. In: 7th International Conference on Learning Representations, May 2019
7.
Zurück zum Zitat Fang, J., Sun, Y., Zhang, Q., Li, Y., Liu, W., Wang, X.: Densely connected search space for more flexible neural architecture search. arXiv preprint arXiv:1906.09607 (2019) Fang, J., Sun, Y., Zhang, Q., Li, Y., Liu, W., Wang, X.: Densely connected search space for more flexible neural architecture search. arXiv preprint arXiv:​1906.​09607 (2019)
8.
Zurück zum Zitat Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017) Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:​1704.​04861 (2017)
9.
Zurück zum Zitat Hsu, C.H., et al.: Monas: multi-objective neural architecture search using reinforcement learning. arXiv preprint arXiv:1806.10332 (2018) Hsu, C.H., et al.: Monas: multi-objective neural architecture search using reinforcement learning. arXiv preprint arXiv:​1806.​10332 (2018)
10.
Zurück zum Zitat Liu, C., et al.: Progressive neural architecture search. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 19–34 (2018) Liu, C., et al.: Progressive neural architecture search. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 19–34 (2018)
11.
Zurück zum Zitat Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical representations for efficient architecture search. In: 6th International Conference on Learning Representations, May 2018 Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical representations for efficient architecture search. In: 6th International Conference on Learning Representations, May 2018
12.
Zurück zum Zitat Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: 7th International Conference on Learning Representations, May 2019 Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: 7th International Conference on Learning Representations, May 2019
13.
Zurück zum Zitat Lu, Z., et al.: NSGA-Net: neural architecture search using multi-objective genetic algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 419–427. ACM (2019) Lu, Z., et al.: NSGA-Net: neural architecture search using multi-objective genetic algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 419–427. ACM (2019)
14.
Zurück zum Zitat Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, pp. 4780–4789 (2019) Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, pp. 4780–4789 (2019)
15.
Zurück zum Zitat Real, E., et al.: Large-scale evolution of image classifiers. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2902–2911 (2017) Real, E., et al.: Large-scale evolution of image classifiers. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2902–2911 (2017)
16.
Zurück zum Zitat Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018) Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
17.
Zurück zum Zitat Tan, M., et al.: Mnasnet: platform-aware neural architecture search for mobile. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820–2828 (2019) Tan, M., et al.: Mnasnet: platform-aware neural architecture search for mobile. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820–2828 (2019)
18.
Zurück zum Zitat Wu, B., et al.: Fbnet: hardware-aware efficient convnet design via differentiable neural architecture search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10734–10742 (2019) Wu, B., et al.: Fbnet: hardware-aware efficient convnet design via differentiable neural architecture search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10734–10742 (2019)
19.
Zurück zum Zitat Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE (2009) Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE (2009)
20.
Zurück zum Zitat Yang, X.S., Deb, S.: Multiobjective cuckoo search for design optimization. Comput. Oper. Res. 40(6), 1616–1624 (2013)MathSciNetCrossRef Yang, X.S., Deb, S.: Multiobjective cuckoo search for design optimization. Comput. Oper. Res. 40(6), 1616–1624 (2013)MathSciNetCrossRef
21.
Zurück zum Zitat Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018) Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)
22.
Zurück zum Zitat Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: 5th International Conference on Learning Representations, April 2017 Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: 5th International Conference on Learning Representations, April 2017
23.
Zurück zum Zitat Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018) Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)
Metadaten
Titel
Multi-objective Cuckoo Algorithm for Mobile Devices Network Architecture Search
verfasst von
Nan Zhang
Jianzong Wang
Jian Yang
Xiaoyang Qu
Jing Xiao
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-61609-0_25