Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2020

17.09.2020

Multi-Objective Optimization for Energy Absorption of Carbon Fiber-Reinforced Plastic/Aluminum Hybrid Circular Tube under Both Transverse and Axial Loading

verfasst von: Qihua Ma, Boyan Dong, Yibin Zha, Jiarui Sun, Xuehui Gan, Ming Cai, Tianjun Zhou

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to obtain a hybrid tube with better energy absorption performance under both three-point bending and axial compression, multi-objective optimization for energy absorption of carbon fiber-reinforced plastics (CFRP)/aluminum (CFRP/AL) hybrid circular tubes was presented in this paper. Experiments and finite element model (FEM) of the hybrid circular tubes subjected to three-point bending and axial compression were performed, and the finite element models were validated. The effects of fiber filament winding angle (θ) and aluminum wall thickness (t) on energy absorption characteristic of the hybrid tube under three-point bending and axial compressive were discussed by FEM. The results show that θ and t have different effects on the specific energy absorption (SEA) of the hybrid tube under three-point bending and axial compression, respectively. A five-order polynomial response surface (PRS) and artificial neural network (ANN) were used to connect variables (θ and t) and the objective (SEA), respectively. It was found that the fitting accuracy of ANN was better. The non-dominated sorting genetic algorithm-II (NSGAII) was applied to obtain optimal results in the form of Pareto frontier solutions. The specific energy absorption of the optimized hybrid tube (θ = 24°, t = 1.45 mm) verified by simulation under three-point bending and axial compression is 1.11 kN/kg and 45.59 kN/kg, respectively. The hybrid tube exhibits better specific energy absorption under both loads.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Ma, H. Yi, H. Lu et al., On the Lightweighting of Automobile, Eng. Sci., 2009, 11(9), p 20–27 M. Ma, H. Yi, H. Lu et al., On the Lightweighting of Automobile, Eng. Sci., 2009, 11(9), p 20–27
2.
Zurück zum Zitat C. Joseph and K. Benedy, Light Metals in Automotive Applications, Light metal age., 2000, 10(2), p 34–35 C. Joseph and K. Benedy, Light Metals in Automotive Applications, Light metal age., 2000, 10(2), p 34–35
3.
Zurück zum Zitat M.J. Alexander, An Approximate Analysis of the Collapse of Thin Cylindrical Shells under Axial Loading, Quart. J. Mech. Appl. Math., 1960, 13(1), p 10–15CrossRef M.J. Alexander, An Approximate Analysis of the Collapse of Thin Cylindrical Shells under Axial Loading, Quart. J. Mech. Appl. Math., 1960, 13(1), p 10–15CrossRef
4.
Zurück zum Zitat T. Wierzbicki and W. Abramowicz, On the Crushing Mechanics of Thin-Walled Structures, J. Appl. Mech., 1983, 50(4a), p 727CrossRef T. Wierzbicki and W. Abramowicz, On the Crushing Mechanics of Thin-Walled Structures, J. Appl. Mech., 1983, 50(4a), p 727CrossRef
5.
Zurück zum Zitat T. Wierzbicki, L. Recke, W. Abramowicz et al., Stress Profiles in Thin-Walled Prismatic Columns Subjected to Crush Loading—I, Compression. Comput. Struct., 1994, 51(6), p 611–623CrossRef T. Wierzbicki, L. Recke, W. Abramowicz et al., Stress Profiles in Thin-Walled Prismatic Columns Subjected to Crush Loading—I, Compression. Comput. Struct., 1994, 51(6), p 611–623CrossRef
6.
Zurück zum Zitat H.S. Kim and T. Wierzbicki, Crush Behavior of Thin-Walled Prismatic Columns under Combined Bending and Compression, Comput. Struct., 2001, 79(15), p 1417–1432CrossRef H.S. Kim and T. Wierzbicki, Crush Behavior of Thin-Walled Prismatic Columns under Combined Bending and Compression, Comput. Struct., 2001, 79(15), p 1417–1432CrossRef
7.
Zurück zum Zitat H.S. Kim, New Extruded Multi-Cell Aluminum Profile for Maximum Crash Energy Absorption and Eeight Efficiency, Thin Walled Struct., 2002, 40(4), p 311–327CrossRef H.S. Kim, New Extruded Multi-Cell Aluminum Profile for Maximum Crash Energy Absorption and Eeight Efficiency, Thin Walled Struct., 2002, 40(4), p 311–327CrossRef
8.
Zurück zum Zitat J. Meredith, E. Bilson, R. Powe et al., A Performance Versus Cost analysis of Prepreg Carbon Fibre Epoxy Energy Absorption Structures, Compos. Struct., 2015, 124, p 206–213CrossRef J. Meredith, E. Bilson, R. Powe et al., A Performance Versus Cost analysis of Prepreg Carbon Fibre Epoxy Energy Absorption Structures, Compos. Struct., 2015, 124, p 206–213CrossRef
9.
Zurück zum Zitat A. Meidell, Computer Aided Material Selection for Circular Tubes Designed to Resist Axial Crushing, Thin Walled Struct., 2009, 47(8), p 962–969CrossRef A. Meidell, Computer Aided Material Selection for Circular Tubes Designed to Resist Axial Crushing, Thin Walled Struct., 2009, 47(8), p 962–969CrossRef
10.
Zurück zum Zitat R. Kalhor and S.W. Case, The Effect of FRP Thickness on Energy Absorption of Metal-FRP Square Tubes Subjected to Axial Compressive Loading, Compos. Struct., 2015, 130, p 44–50CrossRef R. Kalhor and S.W. Case, The Effect of FRP Thickness on Energy Absorption of Metal-FRP Square Tubes Subjected to Axial Compressive Loading, Compos. Struct., 2015, 130, p 44–50CrossRef
11.
Zurück zum Zitat M. Mirzaei, M. Shakeri, M. Sadighi et al., Experimental and Analytical Assessment of Axial Crushing of Circular Hybrid Tubes under Quasi-Static Load, Compos. Struct., 2012, 94(6), p 1959–1966CrossRef M. Mirzaei, M. Shakeri, M. Sadighi et al., Experimental and Analytical Assessment of Axial Crushing of Circular Hybrid Tubes under Quasi-Static Load, Compos. Struct., 2012, 94(6), p 1959–1966CrossRef
12.
Zurück zum Zitat H.W. Song, Z.M. Wan, Z.M. Xie et al., Axial Impact Behavior and Energy Absorption Efficiency of Composite Wrapped Metal Tubes, Int. J. Impact Eng., 2000, 24(4), p 385–401CrossRef H.W. Song, Z.M. Wan, Z.M. Xie et al., Axial Impact Behavior and Energy Absorption Efficiency of Composite Wrapped Metal Tubes, Int. J. Impact Eng., 2000, 24(4), p 385–401CrossRef
13.
Zurück zum Zitat E.H. Hanefi and T. Wierzbicki, Axial Resistance and Energy Absorption of Externally Reinforced Metal Tubes, Compos. B Eng., 1996, 27(5), p 387–394CrossRef E.H. Hanefi and T. Wierzbicki, Axial Resistance and Energy Absorption of Externally Reinforced Metal Tubes, Compos. B Eng., 1996, 27(5), p 387–394CrossRef
14.
Zurück zum Zitat G. Sun, Z. Wang, J. Hong et al., Experimental Investigation of the Quasi-Static Axial Crushing Behavior of Filament-Wound CFRP and Aluminum/CFRP Hybrid Tubes, Compos. Struct., 2018, 194, p S0263822317329744 G. Sun, Z. Wang, J. Hong et al., Experimental Investigation of the Quasi-Static Axial Crushing Behavior of Filament-Wound CFRP and Aluminum/CFRP Hybrid Tubes, Compos. Struct., 2018, 194, p S0263822317329744
15.
Zurück zum Zitat G. Zhu, G. Sun, H. Yu et al., Energy Absorption of Metal, Composite and Metal/Composite Hybrid Structures under Oblique Crushing Loading, Int. J. Mech. Sci., 2018, 135, p 458–483CrossRef G. Zhu, G. Sun, H. Yu et al., Energy Absorption of Metal, Composite and Metal/Composite Hybrid Structures under Oblique Crushing Loading, Int. J. Mech. Sci., 2018, 135, p 458–483CrossRef
16.
Zurück zum Zitat M. Song and J. Lee, The Characteristics of Bending Collapse of Aluminum/GFRP Hybrid Tube, J. Kor Soc. Compos. Mater., 2000, 84, p 7 M. Song and J. Lee, The Characteristics of Bending Collapse of Aluminum/GFRP Hybrid Tube, J. Kor Soc. Compos. Mater., 2000, 84, p 7
17.
Zurück zum Zitat D.W. Jung, H.-J. Kim, and N.-S. Choi, Aluminum–GFRP Hybrid Square Tube Beam Reinforced by a Thin Composite Skin Layer, Compos. A Appl. Sci. Manuf., 2009, 40(10), p 1558–1565CrossRef D.W. Jung, H.-J. Kim, and N.-S. Choi, Aluminum–GFRP Hybrid Square Tube Beam Reinforced by a Thin Composite Skin Layer, Compos. A Appl. Sci. Manuf., 2009, 40(10), p 1558–1565CrossRef
18.
Zurück zum Zitat Lee, S.H., Kim, H.J., Choi, N.S., editors. Bending performance analysis of aluminum-composite hybrid tube beams. Key Engineering Materials; 2006: Trans Tech Publ. Lee, S.H., Kim, H.J., Choi, N.S., editors. Bending performance analysis of aluminum-composite hybrid tube beams. Key Engineering Materials; 2006: Trans Tech Publ.
19.
Zurück zum Zitat D.K. Shin, H.C. Kim, and J.J. Lee, Numerical Analysis of the Damage Behavior of an Aluminum/CFRP Hybrid Beam under Three Point Bending, Compos. B Eng., 2014, 56(1), p 397–407CrossRef D.K. Shin, H.C. Kim, and J.J. Lee, Numerical Analysis of the Damage Behavior of an Aluminum/CFRP Hybrid Beam under Three Point Bending, Compos. B Eng., 2014, 56(1), p 397–407CrossRef
20.
Zurück zum Zitat H.C. Kim, D.K. Shin, and J.J. Lee, Characteristics of Aluminum/CFRP Short Square Hollow Section Beam under Transverse Quasi-Static Loading, Compos. B Eng., 2013, 51(51), p 345–358CrossRef H.C. Kim, D.K. Shin, and J.J. Lee, Characteristics of Aluminum/CFRP Short Square Hollow Section Beam under Transverse Quasi-Static Loading, Compos. B Eng., 2013, 51(51), p 345–358CrossRef
21.
Zurück zum Zitat R. Kalhor, H. Akbarshahi, and S.W. Case, Numerical Modeling of the Effects of FRP Thickness and Stacking Sequence on Energy Absorption of Metal–FRP Square Tubes, Compos. Struct., 2016, 147, p 231–246CrossRef R. Kalhor, H. Akbarshahi, and S.W. Case, Numerical Modeling of the Effects of FRP Thickness and Stacking Sequence on Energy Absorption of Metal–FRP Square Tubes, Compos. Struct., 2016, 147, p 231–246CrossRef
22.
Zurück zum Zitat G. Sun, H. Yu, Z. Wang et al., Energy Absorption Mechanics and Design Optimization of CFRP/aluminium Hybrid Structures for Transverse Loading, Int. J. Mech. Sci., 2019, 150, p 767–783CrossRef G. Sun, H. Yu, Z. Wang et al., Energy Absorption Mechanics and Design Optimization of CFRP/aluminium Hybrid Structures for Transverse Loading, Int. J. Mech. Sci., 2019, 150, p 767–783CrossRef
23.
Zurück zum Zitat E. Morris, A.G. Olabi, and M.S.J. Hashmi, Lateral Crushing of Circular and Non-Circular Tube Systems under Quasi-Static Conditions, J. Mater. Process. Technol., 2007, 191(1–3), p 132–135CrossRef E. Morris, A.G. Olabi, and M.S.J. Hashmi, Lateral Crushing of Circular and Non-Circular Tube Systems under Quasi-Static Conditions, J. Mater. Process. Technol., 2007, 191(1–3), p 132–135CrossRef
24.
Zurück zum Zitat Sathish, T., Sabarirajan, N., Karthick, S. Machining parameters optimization of Aluminium Alloy 6063 with reinforcement of SiC composites. Materials Today: Proceedings. 2020. Sathish, T., Sabarirajan, N., Karthick, S. Machining parameters optimization of Aluminium Alloy 6063 with reinforcement of SiC composites. Materials Today: Proceedings. 2020.
25.
Zurück zum Zitat G.Y. Sun, H.L. Zhang, J.G. Fang et al., Multi-Objective and Multi-Case Reliability-Based Design Optimization for Tailor Rolled Blank (TRB) Structures, Struct Multidisciplinary Optim., 2017, 55(5), p 1899–1916CrossRef G.Y. Sun, H.L. Zhang, J.G. Fang et al., Multi-Objective and Multi-Case Reliability-Based Design Optimization for Tailor Rolled Blank (TRB) Structures, Struct Multidisciplinary Optim., 2017, 55(5), p 1899–1916CrossRef
26.
Zurück zum Zitat S.T.W. Lau, M.R. Said, and M.Y. Yaakob, On the Effect of Geometrical Designs and Failure Modes in Composite Axial Crushing: A Literature Review, Compos. Struct., 2012, 94(3), p 803–812CrossRef S.T.W. Lau, M.R. Said, and M.Y. Yaakob, On the Effect of Geometrical Designs and Failure Modes in Composite Axial Crushing: A Literature Review, Compos. Struct., 2012, 94(3), p 803–812CrossRef
27.
Zurück zum Zitat J.S. Kim, H.-J. Yoon, and K.-B. Shin, A Study on Crushing Behaviors of Composite Circular Tubes with Different Reinforcing Fibers, Int. J. Impact Eng., 2011, 38(4), p 198–207CrossRef J.S. Kim, H.-J. Yoon, and K.-B. Shin, A Study on Crushing Behaviors of Composite Circular Tubes with Different Reinforcing Fibers, Int. J. Impact Eng., 2011, 38(4), p 198–207CrossRef
28.
Zurück zum Zitat Cao, W. The Research on Crushing Response and Crashworthiness under Axial compression of Thin-walled CFRP Tubes.2017. Cao, W. The Research on Crushing Response and Crashworthiness under Axial compression of Thin-walled CFRP Tubes.2017.
29.
Zurück zum Zitat X. Wang and G. Lu, Axial Crushing Force of Externally Fibre-Reinforced Metal Tubes, Proc. Inst. Mech. Eng. Part C J Mech. Eng. Sci., 2002, 216(9), p 863–874CrossRef X. Wang and G. Lu, Axial Crushing Force of Externally Fibre-Reinforced Metal Tubes, Proc. Inst. Mech. Eng. Part C J Mech. Eng. Sci., 2002, 216(9), p 863–874CrossRef
30.
Zurück zum Zitat J. Fang, G. Sun, N. Qiu et al., On Design Optimization for Structural Crashworthiness and Its State of the Art, Struct. Multidiscip. Optim., 2017, 55(3), p 1091–1119CrossRef J. Fang, G. Sun, N. Qiu et al., On Design Optimization for Structural Crashworthiness and Its State of the Art, Struct. Multidiscip. Optim., 2017, 55(3), p 1091–1119CrossRef
31.
Zurück zum Zitat J.M. Zurada, Introduction to artificial neural systems, Vol 8, West publishing company St, Paul, 1992 J.M. Zurada, Introduction to artificial neural systems, Vol 8, West publishing company St, Paul, 1992
32.
Zurück zum Zitat Wang CY, Li Y, Zhao WZ, et al. Structure design and multi-objective optimization of a novel crash box based on biomimetic structure. International Journal of Mechanical Sciences. 2018;138. Wang CY, Li Y, Zhao WZ, et al. Structure design and multi-objective optimization of a novel crash box based on biomimetic structure. International Journal of Mechanical Sciences. 2018;138.
Metadaten
Titel
Multi-Objective Optimization for Energy Absorption of Carbon Fiber-Reinforced Plastic/Aluminum Hybrid Circular Tube under Both Transverse and Axial Loading
verfasst von
Qihua Ma
Boyan Dong
Yibin Zha
Jiarui Sun
Xuehui Gan
Ming Cai
Tianjun Zhou
Publikationsdatum
17.09.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04941-4

Weitere Artikel der Ausgabe 9/2020

Journal of Materials Engineering and Performance 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.