Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 5/2015

07.07.2015 | INDUSTRIAL APPLICATION

Multi-objective optimization of blank shape for deep drawing with variable blank holder force via sequential approximate optimization

verfasst von: Satoshi Kitayama, Marina Saikyo, Kiichiro Kawamoto, Ken Yamamichi

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Optimal blank shape minimizing earing in deep drawing has a direct influence on material saving as well as product quality. A number of methods for blank shape optimization have been previously proposed, most of which adopt a closed-loop type algorithm that requires a large number of simulation runs. Numerical simulation in sheet metal forming is so numerically intensive that it is preferable to find an optimal blank shape with a small number of simulation runs. This paper proposes a method for determining the optimal blank shape design in square cup deep drawing using sequential approximate optimization (SAO) with a radial basis function (RBF) network. Sheet metal forming is multi-objective in nature, and thus the blank shape design problem is formulated as a multi-objective design optimization. The aim is therefore to identify the pareto-frontier with a small number of simulation runs. The earing is minimized under tearing and wrinkling constraints with a variable blank holder force (VBHF), which varies through the punch stroke. Numerical results show that the disconnected pareto-frontier is well identified with a small number of simulation runs. The earing of the optimal blank shape with the VBHF is also drastically reduced, when compared to a reference blank shape. Based on the numerical results, the experiments using a servo press are carried out. Consequently, the validity of the proposed approach is confirmed through the numerical and experimental results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bonte MHA, van den Boogaard AH, Huetink J (2008a) An optimization strategy for industrial metal forming processes –Modelling, screening and solving of optimization problems in metal forming. Struct Multidiscip Optim 35:571–586CrossRef Bonte MHA, van den Boogaard AH, Huetink J (2008a) An optimization strategy for industrial metal forming processes –Modelling, screening and solving of optimization problems in metal forming. Struct Multidiscip Optim 35:571–586CrossRef
Zurück zum Zitat Bonte MHA, van den Boogaard AH, Huetink J (2008b) An optimization strategy for industrial metal forming processes. Struct Multidiscip Optim 35:571–586CrossRef Bonte MHA, van den Boogaard AH, Huetink J (2008b) An optimization strategy for industrial metal forming processes. Struct Multidiscip Optim 35:571–586CrossRef
Zurück zum Zitat Bonte MHA, Fourment L, Do T, van den Boogaard AH, Huetink J (2010) Optimization of forging processes using finite element simulations –A comparison of sequential approximate optimization and other algorithms. Struct Multidiscip Optim 42:797–810CrossRef Bonte MHA, Fourment L, Do T, van den Boogaard AH, Huetink J (2010) Optimization of forging processes using finite element simulations –A comparison of sequential approximate optimization and other algorithms. Struct Multidiscip Optim 42:797–810CrossRef
Zurück zum Zitat Chamekh A, BenRhaiem S, Khaterchi H, BelHadjSalah H, Hambli R (2010) An optimization strategy based on a metamodel applied for the prediction of the initial blank shape in a deep drawing process. Int J Adv Manuf Technol 50:93–100CrossRef Chamekh A, BenRhaiem S, Khaterchi H, BelHadjSalah H, Hambli R (2010) An optimization strategy based on a metamodel applied for the prediction of the initial blank shape in a deep drawing process. Int J Adv Manuf Technol 50:93–100CrossRef
Zurück zum Zitat Chengzhi S, Guanlong C, Zhongqin L (2005) Determining the optimum variable blank-holder forces using adaptive response surface methodology (ARSM). Int J Adv Manuf Technol 26:23–29CrossRef Chengzhi S, Guanlong C, Zhongqin L (2005) Determining the optimum variable blank-holder forces using adaptive response surface methodology (ARSM). Int J Adv Manuf Technol 26:23–29CrossRef
Zurück zum Zitat Fazli A, Arezoo B (2012) A comparison of numerical iteration based algorithms in blank optimization. Finite Elem Anal Des 50:207–216CrossRef Fazli A, Arezoo B (2012) A comparison of numerical iteration based algorithms in blank optimization. Finite Elem Anal Des 50:207–216CrossRef
Zurück zum Zitat Gantar G, Pepelnjak T, Kuzman K (2002) Optimization of sheet metal forming process by the use of numerical simulations. J Mater Process Technol 130–131:54–59CrossRef Gantar G, Pepelnjak T, Kuzman K (2002) Optimization of sheet metal forming process by the use of numerical simulations. J Mater Process Technol 130–131:54–59CrossRef
Zurück zum Zitat Hillmann M, Kubli W (1999) Optimization of sheet metal forming processes using simulation programs, in: Numisheet’99. Beasnc, France 1:287–292 Hillmann M, Kubli W (1999) Optimization of sheet metal forming processes using simulation programs, in: Numisheet’99. Beasnc, France 1:287–292
Zurück zum Zitat Hino R, Yoshida F, Toropov VV (2006) Optimum blank design for sheet metal forming based on the interaction of high- and low-fidelity FE models. Arch Appl Mech 75(10):679–691CrossRefMATH Hino R, Yoshida F, Toropov VV (2006) Optimum blank design for sheet metal forming based on the interaction of high- and low-fidelity FE models. Arch Appl Mech 75(10):679–691CrossRefMATH
Zurück zum Zitat Ingarao G, Di Lorenzo R (2010) Optimization methods for complex sheet metal stamping computer aided engineering. Struct Multidiscip Optim 42:459–480CrossRef Ingarao G, Di Lorenzo R (2010) Optimization methods for complex sheet metal stamping computer aided engineering. Struct Multidiscip Optim 42:459–480CrossRef
Zurück zum Zitat Katayama T, Nakamachi E, Nakamura Y, Ohta T, Morishita Y, Murase H (2004) Development of process design system for press forming – multi-objective optimization of intermediate die shape in transfer forming. J Mater Process Technol 155–156:1564–1570CrossRef Katayama T, Nakamachi E, Nakamura Y, Ohta T, Morishita Y, Murase H (2004) Development of process design system for press forming – multi-objective optimization of intermediate die shape in transfer forming. J Mater Process Technol 155–156:1564–1570CrossRef
Zurück zum Zitat Kishor N, Kumar DR (2002) Optimization of initial blank shape to minimize earing in deep drawing using finite element method. J Mater Process Technol 130–131:20–30CrossRef Kishor N, Kumar DR (2002) Optimization of initial blank shape to minimize earing in deep drawing using finite element method. J Mater Process Technol 130–131:20–30CrossRef
Zurück zum Zitat Kitayama S, Yamazaki K (2011) Simple estimate of the width in Gaussian kernel with adaptive scaling technique. Appl Soft Comput 11(8):4726–4737CrossRef Kitayama S, Yamazaki K (2011) Simple estimate of the width in Gaussian kernel with adaptive scaling technique. Appl Soft Comput 11(8):4726–4737CrossRef
Zurück zum Zitat Kitayama S, Hamano S, Yamazaki K, Kubo T, Nishikawa H, Kinoshita H (2010) A closed-loop type algorithm for determination of variable blank holder force trajectory and its application to square cup deep drawing. Int J Adv Manuf Technol 51:507–571CrossRef Kitayama S, Hamano S, Yamazaki K, Kubo T, Nishikawa H, Kinoshita H (2010) A closed-loop type algorithm for determination of variable blank holder force trajectory and its application to square cup deep drawing. Int J Adv Manuf Technol 51:507–571CrossRef
Zurück zum Zitat Kitayama S, Arakawa M, Yamazaki K (2011) Sequential approximate optimization using radial basis function network for engineering optimization. Optim Eng 12(4):535–557CrossRefMathSciNetMATH Kitayama S, Arakawa M, Yamazaki K (2011) Sequential approximate optimization using radial basis function network for engineering optimization. Optim Eng 12(4):535–557CrossRefMathSciNetMATH
Zurück zum Zitat Kitayama S, Kita K, Yamazaki K (2012) Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network. J Adv Manuf Technol 61(9–12):1067–1083CrossRef Kitayama S, Kita K, Yamazaki K (2012) Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network. J Adv Manuf Technol 61(9–12):1067–1083CrossRef
Zurück zum Zitat Lin ZQ, Wang WR, Chen GL (2007) A new strategy to optimize variable blank holder force towards improving the forming limits of aluminum sheet metal forming. J Mater Process Technol 183:339–346CrossRef Lin ZQ, Wang WR, Chen GL (2007) A new strategy to optimize variable blank holder force towards improving the forming limits of aluminum sheet metal forming. J Mater Process Technol 183:339–346CrossRef
Zurück zum Zitat Liu Y, Chen W, Ding L, Wang X (2013) Response surface methodology based on support vector regression for polygon blank shape optimization design. Int J Adv Manuf Technol 66:1397–1405CrossRef Liu Y, Chen W, Ding L, Wang X (2013) Response surface methodology based on support vector regression for polygon blank shape optimization design. Int J Adv Manuf Technol 66:1397–1405CrossRef
Zurück zum Zitat Miettinen KM (1998) Nonlinear Multiobjective Optimization, Kluwer Academic Publishers Miettinen KM (1998) Nonlinear Multiobjective Optimization, Kluwer Academic Publishers
Zurück zum Zitat Naceur H, Guo YQ, Batoz JL (2004) Blank optimization in sheet metal forming using an evolutionary algorithm. J Mater Process Technol 151:183–191CrossRef Naceur H, Guo YQ, Batoz JL (2004) Blank optimization in sheet metal forming using an evolutionary algorithm. J Mater Process Technol 151:183–191CrossRef
Zurück zum Zitat Naceur H, Ben-Elechi S, Batoz JL, Knopf-Lenoir C (2008) Response surface methodology for the rapid design of aluminum sheet metal forming parameters. Mater Des 29:781–790CrossRef Naceur H, Ben-Elechi S, Batoz JL, Knopf-Lenoir C (2008) Response surface methodology for the rapid design of aluminum sheet metal forming parameters. Mater Des 29:781–790CrossRef
Zurück zum Zitat Oliveira MC, Padmanabhan R, Baptista AJ, Alves JL, Menezes LF (2009) Sensitivity study on some parameters in blank design. Mater Des 30:1223–1230CrossRef Oliveira MC, Padmanabhan R, Baptista AJ, Alves JL, Menezes LF (2009) Sensitivity study on some parameters in blank design. Mater Des 30:1223–1230CrossRef
Zurück zum Zitat Park SH, Yoon JH, Yang DY, Kim YH (1999) Optimum blank design in sheet metal forming by the deformation path iteration method. Int J Mech Sci 41:1217–1232CrossRefMATH Park SH, Yoon JH, Yang DY, Kim YH (1999) Optimum blank design in sheet metal forming by the deformation path iteration method. Int J Mech Sci 41:1217–1232CrossRefMATH
Zurück zum Zitat Pegada V, Chun Y, Santhanam S (2002) An algorithm for determining the optimal blank shape for the deep drawing of aluminum cups. J Mater Process Technol 125–126:743–750CrossRef Pegada V, Chun Y, Santhanam S (2002) An algorithm for determining the optimal blank shape for the deep drawing of aluminum cups. J Mater Process Technol 125–126:743–750CrossRef
Zurück zum Zitat Shim H, Son K, Kim K (2000) Optimum blank shape design by sensitivity analysis. J Mater Process Technol 104:191–199CrossRef Shim H, Son K, Kim K (2000) Optimum blank shape design by sensitivity analysis. J Mater Process Technol 104:191–199CrossRef
Zurück zum Zitat Vafaeesefat A (2008) Optimum blank shape design in sheet metal forming by boundary projection method. Int J Mater Form 1:189–192CrossRef Vafaeesefat A (2008) Optimum blank shape design in sheet metal forming by boundary projection method. Int J Mater Form 1:189–192CrossRef
Zurück zum Zitat Vafaeesefat A (2011) Finite element simulation for blank shape optimization in sheet metal forming. Mater Manuf Process 26:93–98CrossRef Vafaeesefat A (2011) Finite element simulation for blank shape optimization in sheet metal forming. Mater Manuf Process 26:93–98CrossRef
Zurück zum Zitat Wang H, Li GY, Zhong ZH (2008a) Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method. J Mat ProcessTechnol 197:77–88CrossRef Wang H, Li GY, Zhong ZH (2008a) Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method. J Mat ProcessTechnol 197:77–88CrossRef
Zurück zum Zitat Wang H, Li E, Li GY (2008b) Optimization of drawbead design in sheet metal forming based on intelligent sampling by using response surface methodology. J Mat Process Technol 206:45–55CrossRef Wang H, Li E, Li GY (2008b) Optimization of drawbead design in sheet metal forming based on intelligent sampling by using response surface methodology. J Mat Process Technol 206:45–55CrossRef
Zurück zum Zitat Wang J, Goel A, Yang F, Gau JT (2009) Blank optimization for sheet metal forming using multi-step finite element simulations. Int J Adv Manuf Technol 40:709–720CrossRef Wang J, Goel A, Yang F, Gau JT (2009) Blank optimization for sheet metal forming using multi-step finite element simulations. Int J Adv Manuf Technol 40:709–720CrossRef
Zurück zum Zitat Wang H, Li E, Li GY (2010) Parallel boundary and best neighbor searching sampling algorithm for drawbead design optimization in sheet metal forming. Struct Multidiscip Optim 41:309–324CrossRef Wang H, Li E, Li GY (2010) Parallel boundary and best neighbor searching sampling algorithm for drawbead design optimization in sheet metal forming. Struct Multidiscip Optim 41:309–324CrossRef
Metadaten
Titel
Multi-objective optimization of blank shape for deep drawing with variable blank holder force via sequential approximate optimization
verfasst von
Satoshi Kitayama
Marina Saikyo
Kiichiro Kawamoto
Ken Yamamichi
Publikationsdatum
07.07.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 5/2015
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-015-1293-1

Weitere Artikel der Ausgabe 5/2015

Structural and Multidisciplinary Optimization 5/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.