Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 3/2015

01.03.2015 | RESEARCH PAPER

Multi-objective topology optimization of multi-component continuum structures via a Kriging-interpolated level set approach

verfasst von: David Guirguis, Karim Hamza, Mohamed Aly, Hesham Hegazi, Kazuhiro Saitou

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper explores a framework for topology optimization of multi-component sheet metal structures, such as those often used in the automotive industry. The primary reason for having multiple components in a structure is to reduce the manufacturing cost, which can become prohibitively expensive otherwise. Having a multi-component structure necessitates re-joining, which often comes at sacrifices in the assembly cost, weight and structural performance. The problem of designing a multi-component structure is thus posed in a multi-objective framework. Approaches to solve the problem may be classified into single and two stage approaches. Two-stage approaches start by focusing solely on structural performance in order to obtain optimal monolithic (single piece) designs, and then the decomposition into multiple components is considered without changing the base topology (identical to the monolithic design). Single-stage approaches simultaneously attempt to optimize both the base topology and its decomposition. Decomposition is an inherently discrete problem, and as such, non-gradient methods are needed for single-stage and second stage of two-stage approaches. This paper adopts an implicit formulation (level-sets) of the design variables, which significantly reduces the number of design variables needed in either single or two stage approaches. The number of design variables in the formulation is independent from the meshing size, which enables application of non-gradient methods to realistic designs. Test results of a short cantilever and an L-shaped bracket studies show reasonable success of both single and two stage approaches, with each approach having different merits.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allaire G, Jouve F, Maillot H (2004a) Topology optimization for minimum stress design with the homogenization method. Struct Multidiscip Optim 28:87–98CrossRefMATHMathSciNet Allaire G, Jouve F, Maillot H (2004a) Topology optimization for minimum stress design with the homogenization method. Struct Multidiscip Optim 28:87–98CrossRefMATHMathSciNet
Zurück zum Zitat Allaire G, Jouve F, Toader AM (2004b) Structural optimization using a sensitivity analysis and a level-set method. J Comput Phys 194:363–393CrossRefMATHMathSciNet Allaire G, Jouve F, Toader AM (2004b) Structural optimization using a sensitivity analysis and a level-set method. J Comput Phys 194:363–393CrossRefMATHMathSciNet
Zurück zum Zitat Almeida S, Paulino G, Silva E (2009) A simple and effective inverse projection scheme for void distribution control in topology optimization. Struct Multidiscip Optim 39(4):359–371CrossRefMathSciNet Almeida S, Paulino G, Silva E (2009) A simple and effective inverse projection scheme for void distribution control in topology optimization. Struct Multidiscip Optim 39(4):359–371CrossRefMathSciNet
Zurück zum Zitat Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43:1–16CrossRefMATH Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43:1–16CrossRefMATH
Zurück zum Zitat Azegami H, Fukumoto S, Aoyama T (2013) Shape optimization of continua using NURBS as basis functions. Struct Multidiscip Optim 47(2):247–258CrossRefMATHMathSciNet Azegami H, Fukumoto S, Aoyama T (2013) Shape optimization of continua using NURBS as basis functions. Struct Multidiscip Optim 47(2):247–258CrossRefMATHMathSciNet
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224CrossRef Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224CrossRef
Zurück zum Zitat Boothroyd G, Dewhurst P, Knight W (1994) Product design for manufacturing and assembly. Marcel Dekker, New York Boothroyd G, Dewhurst P, Knight W (1994) Product design for manufacturing and assembly. Marcel Dekker, New York
Zurück zum Zitat Burns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459CrossRef Burns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459CrossRef
Zurück zum Zitat Chickermane H, Gea HC (1997) Design of multi-component structural system for optimal layout topology and joint locations. Eng Comput 13:235–243CrossRef Chickermane H, Gea HC (1997) Design of multi-component structural system for optimal layout topology and joint locations. Eng Comput 13:235–243CrossRef
Zurück zum Zitat De Ruiter MJ, Van Keulen F (2004) Topology optimization using a topology description function. Struct Multidiscip Optim 26:406–416CrossRef De Ruiter MJ, Van Keulen F (2004) Topology optimization using a topology description function. Struct Multidiscip Optim 26:406–416CrossRef
Zurück zum Zitat Deaton J, Grandhi R (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38CrossRefMathSciNet Deaton J, Grandhi R (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38CrossRefMathSciNet
Zurück zum Zitat Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37(5):447–465CrossRefMATH Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37(5):447–465CrossRefMATH
Zurück zum Zitat Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRef Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRef
Zurück zum Zitat Denardo EV (2003) Dynamic programming: models and applications. Dover Publications, Mineola Denardo EV (2003) Dynamic programming: models and applications. Dover Publications, Mineola
Zurück zum Zitat Diaz A, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization using a homogenization method. Int J Numer Methods Eng 35:487–502MathSciNet Diaz A, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization using a homogenization method. Int J Numer Methods Eng 35:487–502MathSciNet
Zurück zum Zitat Gea HC, Luo J (2001) Design for energy absorption: a topology optimization approach. ASME IDETC DAC-21060, Montreal Gea HC, Luo J (2001) Design for energy absorption: a topology optimization approach. ASME IDETC DAC-21060, Montreal
Zurück zum Zitat Guest JK, Genut LCS (2010) Reducing dimensionality in topology optimization using adaptive design variable fields. Int J Numer Methods Eng 81(8):1019–1045MATH Guest JK, Genut LCS (2010) Reducing dimensionality in topology optimization using adaptive design variable fields. Int J Numer Methods Eng 81(8):1019–1045MATH
Zurück zum Zitat Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254CrossRefMATHMathSciNet Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254CrossRefMATHMathSciNet
Zurück zum Zitat Guirguis D, Aly M, Hamza K, Hegazi H (2014) Image matching assessment of attainable topology via kriging-interpolated level-sets. ASME IDETC DETC2014-34622, BuffaloCrossRef Guirguis D, Aly M, Hamza K, Hegazi H (2014) Image matching assessment of attainable topology via kriging-interpolated level-sets. ASME IDETC DETC2014-34622, BuffaloCrossRef
Zurück zum Zitat Hamza K, Aly M, Hegazi H, Saitou K (2013a) Multi-objective topology optimization of multi-component continuum structures via an explicit level-set approach. 10th world congress on structural and multidisciplinary optimization, Orlando, FL Hamza K, Aly M, Hegazi H, Saitou K (2013a) Multi-objective topology optimization of multi-component continuum structures via an explicit level-set approach. 10th world congress on structural and multidisciplinary optimization, Orlando, FL
Zurück zum Zitat Hamza K, Aly M, Hegazi H (2013b) An explicit level-set approach for structural topology optimization. ASME IDETC DETC2013-12155, PortlandCrossRef Hamza K, Aly M, Hegazi H (2013b) An explicit level-set approach for structural topology optimization. ASME IDETC DETC2013-12155, PortlandCrossRef
Zurück zum Zitat Hamza K, Aly M, Hegazi H (2013c) A kriging-interpolated level-Set approach for structural topology optimization. J Mech Des 136(1):011008CrossRef Hamza K, Aly M, Hegazi H (2013c) A kriging-interpolated level-Set approach for structural topology optimization. J Mech Des 136(1):011008CrossRef
Zurück zum Zitat James KA, Martins JR (2012) An isoparametric approach to level set topology optimization using a body-fitted finite-element mesh. Comput Struct 90–91:97–106CrossRef James KA, Martins JR (2012) An isoparametric approach to level set topology optimization using a body-fitted finite-element mesh. Comput Struct 90–91:97–106CrossRef
Zurück zum Zitat Jiang T, Chirehdast M (1997) A systems approach to structural topology optimization: designing optimal connections. J Mech Des 119:40–47CrossRef Jiang T, Chirehdast M (1997) A systems approach to structural topology optimization: designing optimal connections. J Mech Des 119:40–47CrossRef
Zurück zum Zitat Kharmanda G, Olhoff N, Mohamed A, Lemaire M (2004) Reliability-based topology optimization. Struct Multidiscip Optim 26(5):295–307CrossRef Kharmanda G, Olhoff N, Mohamed A, Lemaire M (2004) Reliability-based topology optimization. Struct Multidiscip Optim 26(5):295–307CrossRef
Zurück zum Zitat Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620CrossRef Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620CrossRef
Zurück zum Zitat Li Q, Steven GP, Xie YM (2001) Evolutionary structural optimization for connection topology design of multi-component systems. Eng Comput 18(3–4):460–479CrossRefMATH Li Q, Steven GP, Xie YM (2001) Evolutionary structural optimization for connection topology design of multi-component systems. Eng Comput 18(3–4):460–479CrossRefMATH
Zurück zum Zitat Liu X, Lee E, Gea HC, Du PA (2011) Compliant mechanism design using a strain based topology optimization method. ASME IDETC DETC2011-48525, Washington DC Liu X, Lee E, Gea HC, Du PA (2011) Compliant mechanism design using a strain based topology optimization method. ASME IDETC DETC2011-48525, Washington DC
Zurück zum Zitat Ma ZD, Kikuchi N, Cheng HC (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121(1–4):259–280CrossRefMATHMathSciNet Ma ZD, Kikuchi N, Cheng HC (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121(1–4):259–280CrossRefMATHMathSciNet
Zurück zum Zitat Madeira A, Rodrigues JF, Pina H (2005) Multi-objective optimization of structures topology by genetic algorithms. Adv Eng Softw 36:21–28CrossRefMATH Madeira A, Rodrigues JF, Pina H (2005) Multi-objective optimization of structures topology by genetic algorithms. Adv Eng Softw 36:21–28CrossRefMATH
Zurück zum Zitat Mayer R, Kikuchi N, Scott R (1996) Application of topological optimization techniques to structural crashworthiness. Int J Numer Methods Eng 39(8):1383–1403CrossRefMATH Mayer R, Kikuchi N, Scott R (1996) Application of topological optimization techniques to structural crashworthiness. Int J Numer Methods Eng 39(8):1383–1403CrossRefMATH
Zurück zum Zitat Michalewiz Z, Fogel D (2000) How to solve it: modern heuristics. Springer-Verlag Berlin Heidelberg, New YorkCrossRef Michalewiz Z, Fogel D (2000) How to solve it: modern heuristics. Springer-Verlag Berlin Heidelberg, New YorkCrossRef
Zurück zum Zitat Osher S, Sethian JA (1988) Front propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 78:12–49CrossRefMathSciNet Osher S, Sethian JA (1988) Front propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 78:12–49CrossRefMathSciNet
Zurück zum Zitat Rozvany G (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidiscip Optim 21(2):90–108CrossRef Rozvany G (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidiscip Optim 21(2):90–108CrossRef
Zurück zum Zitat Rozvany G (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237CrossRefMATHMathSciNet Rozvany G (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237CrossRefMATHMathSciNet
Zurück zum Zitat Saitou K, Nishiwaki S, Izui K, Papalambros P (2005) A survey on structural optimization in product development. J Comput Inf Sci Eng 5(3):214–226CrossRef Saitou K, Nishiwaki S, Izui K, Papalambros P (2005) A survey on structural optimization in product development. J Comput Inf Sci Eng 5(3):214–226CrossRef
Zurück zum Zitat Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524CrossRef Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524CrossRef
Zurück zum Zitat Sigmund O (2001) A 99 line topology optimization code written in MATLAB. Struct Multidiscip Optim 21(2):120–127CrossRef Sigmund O (2001) A 99 line topology optimization code written in MATLAB. Struct Multidiscip Optim 21(2):120–127CrossRef
Zurück zum Zitat Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424CrossRef Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424CrossRef
Zurück zum Zitat Sigmund O (2011) On the usefulness of non-gradient approaches in topology optimization. Struct Multidiscip Optim 43:589–596CrossRefMATHMathSciNet Sigmund O (2011) On the usefulness of non-gradient approaches in topology optimization. Struct Multidiscip Optim 43:589–596CrossRefMATHMathSciNet
Zurück zum Zitat Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055MathSciNet Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055MathSciNet
Zurück zum Zitat Simpson T, Booker A, Ghosh D, Giunta A, Koch P, Yang RJ (2004) Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Struct Multidiscip Optim 27:302–313CrossRef Simpson T, Booker A, Ghosh D, Giunta A, Koch P, Yang RJ (2004) Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Struct Multidiscip Optim 27:302–313CrossRef
Zurück zum Zitat Wang MY, Li L (2013) Shape equilibrium constraint: a strategy for stress-constrained structural topology optimization. Struct Multidiscip Optim 47:335–352CrossRefMATHMathSciNet Wang MY, Li L (2013) Shape equilibrium constraint: a strategy for stress-constrained structural topology optimization. Struct Multidiscip Optim 47:335–352CrossRefMATHMathSciNet
Zurück zum Zitat Wang S, Wang MY (2006) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65:2060–2090CrossRefMATH Wang S, Wang MY (2006) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65:2060–2090CrossRefMATH
Zurück zum Zitat Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246CrossRefMATH Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246CrossRefMATH
Zurück zum Zitat Wei P, Wang MY (2009) Piecewise constant level set method for structural topology optimization. Int J Numer Methods Eng 78:379–402CrossRefMATH Wei P, Wang MY (2009) Piecewise constant level set method for structural topology optimization. Int J Numer Methods Eng 78:379–402CrossRefMATH
Zurück zum Zitat Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896CrossRef Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896CrossRef
Zurück zum Zitat Xu S, Deng X (2004) An evaluation of simplified finite element models for spot-welded joints. Finite Elem Anal Des 40:1175–1194CrossRef Xu S, Deng X (2004) An evaluation of simplified finite element models for spot-welded joints. Finite Elem Anal Des 40:1175–1194CrossRef
Zurück zum Zitat Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199:2876–2891CrossRefMATHMathSciNet Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199:2876–2891CrossRefMATHMathSciNet
Zurück zum Zitat Yildiz A, Saitou K (2011) Topology synthesis of multi-component structural assemblies in continuum domains. J Mech Des 133:011008CrossRef Yildiz A, Saitou K (2011) Topology synthesis of multi-component structural assemblies in continuum domains. J Mech Des 133:011008CrossRef
Zurück zum Zitat Zhou Z, Hamza K, Saitou K (2011a) Decomposition templates and joint morphing operators for genetic algorithm optimization of multi-component structural topology. ASME IDETC DETC2011-48572, Washington DC Zhou Z, Hamza K, Saitou K (2011a) Decomposition templates and joint morphing operators for genetic algorithm optimization of multi-component structural topology. ASME IDETC DETC2011-48572, Washington DC
Zurück zum Zitat Zhou Z, Hamza K, Saitou K (2011b) Multi-objective topology optimization of spot-welded planar multi-component continuum structures. 9th world congress on structural and multidisciplinary optimization, Shizuoka, Japan Zhou Z, Hamza K, Saitou K (2011b) Multi-objective topology optimization of spot-welded planar multi-component continuum structures. 9th world congress on structural and multidisciplinary optimization, Shizuoka, Japan
Zurück zum Zitat Zitler E, Thiele L (1999) Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271CrossRef Zitler E, Thiele L (1999) Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271CrossRef
Metadaten
Titel
Multi-objective topology optimization of multi-component continuum structures via a Kriging-interpolated level set approach
verfasst von
David Guirguis
Karim Hamza
Mohamed Aly
Hesham Hegazi
Kazuhiro Saitou
Publikationsdatum
01.03.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 3/2015
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-014-1154-3

Weitere Artikel der Ausgabe 3/2015

Structural and Multidisciplinary Optimization 3/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.