Skip to main content


Weitere Artikel dieser Ausgabe durch Wischen aufrufen

09.02.2017 | Ausgabe 1/2018

Designs, Codes and Cryptography 1/2018

Multi-point codes over Kummer extensions

Designs, Codes and Cryptography > Ausgabe 1/2018
Chuangqiang Hu, Shudi Yang
Wichtige Hinweise
Communicated by G. Korchmaros.


This paper is concerned with the construction of algebraic geometric codes defined from Kummer extensions. It plays a significant role in the study of such codes to describe bases for the Riemann–Roch spaces associated with totally ramified places. Along this line, we present an explicit characterization of Weierstrass semigroups and pure gaps. Additionally, we determine the floor of a certain type of divisor introduced by Maharaj, Matthews and Pirsic. Finally, we apply these results to find multi-point codes with excellent parameters. As one of the examples, a presented code with parameters \([254,228,\geqslant 16]\) over \( {\mathbb {F}}_{64} \) yields a new record.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

Designs, Codes and Cryptography 1/2018 Zur Ausgabe

Premium Partner