Skip to main content

2024 | OriginalPaper | Buchkapitel

4. Multi-receptive Field: An Adaptive Path Aggregation Graph Neural Framework for Hyperspectral Image Classification

verfasst von : Yao Ding, Zhili Zhang, Haojie Hu, Fang He, Shuli Cheng, Yijun Zhang

Erschienen in: Graph Neural Network for Feature Extraction and Classification of Hyperspectral Remote Sensing Images

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hyperspectral images (HSIs) collect rich spatial-spectral information in hundreds of spectral bands, which are captured by hyperspectral remote sensors, (Rasti et al., IEEE Geosci Remote Sens Mag 8(4):60–88, 2020; Ghamisi et al., IEEE Geosci Remote Sens Mag 5(4):37–78, 2017; Peng et al., IEEE Trans Geosci Remote Sens 57(2):1183–1194, 2018; Lu et al., IEEE Trans Geosci Remote Sens 56(4):2183–2195, 2018), which are more effective in distinguishing different land-covers compared with other multispectral (Zhao et al., IEEE Trans Neural Netw Learn Syst 30(11):3212–3232, 2019) or RGB (red, green, and blue) image (Hong et al., IEEE Geosci Remote Sens Mag 11:4051, 2021). Therefore, HSIs are widely employed in various applications, ranging from military reconnaissance, marine monitoring to disaster prevention and control (Hong et al., IEEE Geosci Remote Sens 9:16820, 2020; Ding et al., IEEE Geosci Remote Sens Lett 19:1–5, 2021). HSI classification (category each pixel into certain label) is a crucial technique for these applications. However, the complex noise effects and spectral variability (Hong et al., IEEE Trans Image Process 28(4):1923–1938, 2019), labeled training samples deficiency (Wan et al., IEEE Trans Geosci Remote Sens 59(1):597–612, 2021), and high spectral mixing between materials (Zhong et al., IEEE Trans Neural Netw Learn Syst 14:1–13, 2019) bring difficulties in extracting discriminative information from HSI for classification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat P. Ghamisi, N. Yokoya, J. Li, W. Liao, S. Liu, J. Plaza, B. Rasti, A. Plaza, Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art. IEEE Geosci. Remote Sens. Mag. 5(4), 37–78 (2017)CrossRef P. Ghamisi, N. Yokoya, J. Li, W. Liao, S. Liu, J. Plaza, B. Rasti, A. Plaza, Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art. IEEE Geosci. Remote Sens. Mag. 5(4), 37–78 (2017)CrossRef
3.
Zurück zum Zitat J. Peng, W. Sun, Q. Du, Self-paced joint sparse representation for the classification of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 57(2), 1183–1194 (2018)CrossRef J. Peng, W. Sun, Q. Du, Self-paced joint sparse representation for the classification of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 57(2), 1183–1194 (2018)CrossRef
4.
Zurück zum Zitat X. Lu, B. Wang, X. Zheng, X. Li, Exploring models and data for remote sensing image caption generation. IEEE Trans. Geosci. Remote Sens. 56(4), 2183–2195 (2018)CrossRef X. Lu, B. Wang, X. Zheng, X. Li, Exploring models and data for remote sensing image caption generation. IEEE Trans. Geosci. Remote Sens. 56(4), 2183–2195 (2018)CrossRef
5.
Zurück zum Zitat Z. Zhao, P. Zheng, S. Xu, X. Wu, Object detection with deep learning: a review. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3212–3232 (2019)CrossRef Z. Zhao, P. Zheng, S. Xu, X. Wu, Object detection with deep learning: a review. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3212–3232 (2019)CrossRef
9.
Zurück zum Zitat D. Hong, N. Yokoya, J. Chanussot, X. Zhu, An augmented linear mixing model to address spectral variability for hyperspectral unmixing. IEEE Trans. Image Process. 28(4), 1923–1938 (2019)MathSciNetCrossRef D. Hong, N. Yokoya, J. Chanussot, X. Zhu, An augmented linear mixing model to address spectral variability for hyperspectral unmixing. IEEE Trans. Image Process. 28(4), 1923–1938 (2019)MathSciNetCrossRef
10.
Zurück zum Zitat S. Wan, C. Gong, P. Zhong, S. Pan, G. Li, J. Yang, Hyperspectral image classification with context-aware dynamic graph convolutional network. IEEE Trans. Geosci. Remote Sens. 59(1), 597–612 (2021)CrossRef S. Wan, C. Gong, P. Zhong, S. Pan, G. Li, J. Yang, Hyperspectral image classification with context-aware dynamic graph convolutional network. IEEE Trans. Geosci. Remote Sens. 59(1), 597–612 (2021)CrossRef
11.
Zurück zum Zitat P. Zhong, Z. Gong, J. Shan, Multiple instance learning for multiple diverse hyperspectral target characterizations. IEEE Trans. Neural Netw. Learn. Syst. 14, 1–13 (2019) P. Zhong, Z. Gong, J. Shan, Multiple instance learning for multiple diverse hyperspectral target characterizations. IEEE Trans. Neural Netw. Learn. Syst. 14, 1–13 (2019)
12.
Zurück zum Zitat J. Feng et al., Generative adversarial networks based on collaborative learning and attention mechanism for hyperspectral image classification. Remote Sens. 12(7), 1149 (2020)CrossRef J. Feng et al., Generative adversarial networks based on collaborative learning and attention mechanism for hyperspectral image classification. Remote Sens. 12(7), 1149 (2020)CrossRef
13.
Zurück zum Zitat M. Pesaresi, A. Gerhardinger, F. Kayitakire, A robust built-up area presence index by anisotropic rotation-invariant textural measure. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 1(3), 180–192 (2008)CrossRef M. Pesaresi, A. Gerhardinger, F. Kayitakire, A robust built-up area presence index by anisotropic rotation-invariant textural measure. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 1(3), 180–192 (2008)CrossRef
14.
Zurück zum Zitat K. Djerriri, A. Safia, R. Adjoudj, M.S. Karoui, Improving hyperspec-tral image classification by combining spectral and multiband compact texture features, in Proceedings of the IEEE International Geosciences Remote Sensing Symposium (IGARSS) (2019), pp. 465–468 K. Djerriri, A. Safia, R. Adjoudj, M.S. Karoui, Improving hyperspec-tral image classification by combining spectral and multiband compact texture features, in Proceedings of the IEEE International Geosciences Remote Sensing Symposium (IGARSS) (2019), pp. 465–468
15.
Zurück zum Zitat W. Li, G. Wu, F. Zhang, Q. Du, Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote Sens. 55(2), 844–853 (2017)CrossRef W. Li, G. Wu, F. Zhang, Q. Du, Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote Sens. 55(2), 844–853 (2017)CrossRef
16.
Zurück zum Zitat C. Liu, J. Li, L. He, A. Plaza, S. Li, B. Li, Naive gabor networks for hyperspectral image classification. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 376–390 (2020)MathSciNetCrossRef C. Liu, J. Li, L. He, A. Plaza, S. Li, B. Li, Naive gabor networks for hyperspectral image classification. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 376–390 (2020)MathSciNetCrossRef
17.
Zurück zum Zitat Y. Cai, X. Liu, Z. Cai, BS-Nets: an end-to-end framework for band selection of hyperspectral image. IEEE Geosci. Remote Sens. 58, 1969–1984 (2020)CrossRef Y. Cai, X. Liu, Z. Cai, BS-Nets: an end-to-end framework for band selection of hyperspectral image. IEEE Geosci. Remote Sens. 58, 1969–1984 (2020)CrossRef
18.
Zurück zum Zitat Y. Chen, Z. Lin, X. Zhao, G. Wang, Y. Gu, Deep learning-based classification of hyperspectral data. IEEE J. .Select Top. Appl. Earth Observ. Remote Sens. 7(6), 2094–2107 (2014)CrossRef Y. Chen, Z. Lin, X. Zhao, G. Wang, Y. Gu, Deep learning-based classification of hyperspectral data. IEEE J. .Select Top. Appl. Earth Observ. Remote Sens. 7(6), 2094–2107 (2014)CrossRef
19.
Zurück zum Zitat Y. Chen, X. Zhao, X. Jia, Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 8(6), 2381–2392 (2015)CrossRef Y. Chen, X. Zhao, X. Jia, Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 8(6), 2381–2392 (2015)CrossRef
20.
Zurück zum Zitat L. Mou, P. Ghamisi, X.X. Zhu, Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3639–3655 (2017)CrossRef L. Mou, P. Ghamisi, X.X. Zhu, Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3639–3655 (2017)CrossRef
21.
Zurück zum Zitat M. Zhang, W. Li, Q. Du, Diverse region-based CNN for hyperspectral image classification. IEEE Trans. Image Process. 27(6), 2623–2634 (2018)MathSciNetCrossRef M. Zhang, W. Li, Q. Du, Diverse region-based CNN for hyperspectral image classification. IEEE Trans. Image Process. 27(6), 2623–2634 (2018)MathSciNetCrossRef
22.
Zurück zum Zitat T. Li, J. Zhang, Y. Zhang, Classification of hyperspectral image based on deep belief networks, in Proceedings of the IEEE ICIP (2014), pp. 5132–5136 T. Li, J. Zhang, Y. Zhang, Classification of hyperspectral image based on deep belief networks, in Proceedings of the IEEE ICIP (2014), pp. 5132–5136
24.
Zurück zum Zitat W. Hu, Y. Huang, L. Wei, F. Zhang, H. Li, Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 1–12 (2015)CrossRef W. Hu, Y. Huang, L. Wei, F. Zhang, H. Li, Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 1–12 (2015)CrossRef
25.
Zurück zum Zitat J. Yang, Y. Zhao, J.C. Chan, C. Yi, Hyperspectral image classification using two-channel deep convolutional neural network, in Proceedings of the IEEE IGARSS (2016), pp. 5079–5082 J. Yang, Y. Zhao, J.C. Chan, C. Yi, Hyperspectral image classification using two-channel deep convolutional neural network, in Proceedings of the IEEE IGARSS (2016), pp. 5079–5082
26.
Zurück zum Zitat Y. Li, H. Zhang, Q. Shen, Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 9(1), 67 (2017)CrossRef Y. Li, H. Zhang, Q. Shen, Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 9(1), 67 (2017)CrossRef
27.
Zurück zum Zitat D. Hong, N. Yokoya, G. Xia, J. Chanussot, X. Zhu, X-ModalNet: a semi-supervised deep cross-modal network for classification of remote sensing data. ISPRS J. Photogram. Remote Sens. 167, 12–23 (2020)CrossRef D. Hong, N. Yokoya, G. Xia, J. Chanussot, X. Zhu, X-ModalNet: a semi-supervised deep cross-modal network for classification of remote sensing data. ISPRS J. Photogram. Remote Sens. 167, 12–23 (2020)CrossRef
28.
Zurück zum Zitat C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, C. Zhang, Attributed graph clustering: a deep attentional embedding approach. in Proceedings of the International Joint Conference on Artificial Intelligent (IJCAI) (2019), pp. 3670–3676 C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, C. Zhang, Attributed graph clustering: a deep attentional embedding approach. in Proceedings of the International Joint Conference on Artificial Intelligent (IJCAI) (2019), pp. 3670–3676
29.
Zurück zum Zitat D. Hong, N. Yokoya, J. Chanussot, J. Xu, X. Zhu, Learning to propagate labels on graphs: an iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction. ISPRS J. Photogram. Remote Sens 158, 35–49 (2019)CrossRef D. Hong, N. Yokoya, J. Chanussot, J. Xu, X. Zhu, Learning to propagate labels on graphs: an iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction. ISPRS J. Photogram. Remote Sens 158, 35–49 (2019)CrossRef
30.
Zurück zum Zitat Z. Zhang, P. Cui, W. Zhu, Deep learning on graphs: a survey. IEEE Trans. Knowl. Data Eng. 32, 1–20 (2020) Z. Zhang, P. Cui, W. Zhu, Deep learning on graphs: a survey. IEEE Trans. Knowl. Data Eng. 32, 1–20 (2020)
31.
Zurück zum Zitat T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in Proceedings of the ICLR (2017) T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in Proceedings of the ICLR (2017)
32.
Zurück zum Zitat Z. Zhang, P. Cui, W. Zhu, Deep learning on graphs: a survey. IEEE Trans. Knowl. Data Eng. 45, 1–20 (2020) Z. Zhang, P. Cui, W. Zhu, Deep learning on graphs: a survey. IEEE Trans. Knowl. Data Eng. 45, 1–20 (2020)
34.
Zurück zum Zitat A. Sha, B. Wang, X. Wu, L. Zhang, Semisupervised classification for hyperspectral images using graph attention networks. IEEE Geosci. Remote Sens. Lett. 8, 23 (2020) A. Sha, B. Wang, X. Wu, L. Zhang, Semisupervised classification for hyperspectral images using graph attention networks. IEEE Geosci. Remote Sens. Lett. 8, 23 (2020)
35.
Zurück zum Zitat S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, J. Yang, Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(5), 3162–3177 (2020)CrossRef S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, J. Yang, Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(5), 3162–3177 (2020)CrossRef
38.
Zurück zum Zitat T. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in International Conference on Learning Representations (2017) T. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in International Conference on Learning Representations (2017)
39.
Zurück zum Zitat J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, in Proceedings of the International Conference on Learning Representive (CLR) (2014), pp. 1–14 J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, in Proceedings of the International Conference on Learning Representive (CLR) (2014), pp. 1–14
40.
Zurück zum Zitat A. Sandryhaila, J.M.F. Moura, Discrete signal processing on graphs. IEEE Trans. Signal Process. 61(7), 1644–1656 (2013)MathSciNetCrossRef A. Sandryhaila, J.M.F. Moura, Discrete signal processing on graphs. IEEE Trans. Signal Process. 61(7), 1644–1656 (2013)MathSciNetCrossRef
41.
Zurück zum Zitat D.I. Shuman, S.K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Sig. Process. Mag. 30(3), 83–98 (2013)CrossRef D.I. Shuman, S.K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Sig. Process. Mag. 30(3), 83–98 (2013)CrossRef
42.
Zurück zum Zitat P.A. Gagniuc, Markov Chains: From Theory to Implementation and Experimentation (Wiley, 2017) P.A. Gagniuc, Markov Chains: From Theory to Implementation and Experimentation (Wiley, 2017)
43.
Zurück zum Zitat S. Bernhard, A. Smola, and K-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural comput 10(5):1299–1319 (1998) S. Bernhard, A. Smola, and K-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural comput 10(5):1299–1319 (1998)
44.
Zurück zum Zitat R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Strunk, Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRef R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Strunk, Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRef
45.
Zurück zum Zitat Y. Cai, Z. Zhang, Z. Cai, X. Liu, X. Jiang, Q. Yan, Graph convolutional subspace clustering: a robust subspace clustering framework for hyperspectral image. IEEE Trans. Geosci. Remote Sens. 15, 1–12 (2020) Y. Cai, Z. Zhang, Z. Cai, X. Liu, X. Jiang, Q. Yan, Graph convolutional subspace clustering: a robust subspace clustering framework for hyperspectral image. IEEE Trans. Geosci. Remote Sens. 15, 1–12 (2020)
46.
Zurück zum Zitat N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNet N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNet
47.
Zurück zum Zitat S. Zhang, S. Li, Spectral-spatial classification of hyperspectral images via multiscale superpixels based sparse representation, in Proceedings of the IEEE IGARSS (2016), pp. 2423–2426 S. Zhang, S. Li, Spectral-spatial classification of hyperspectral images via multiscale superpixels based sparse representation, in Proceedings of the IEEE IGARSS (2016), pp. 2423–2426
Metadaten
Titel
Multi-receptive Field: An Adaptive Path Aggregation Graph Neural Framework for Hyperspectral Image Classification
verfasst von
Yao Ding
Zhili Zhang
Haojie Hu
Fang He
Shuli Cheng
Yijun Zhang
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8009-9_4