Skip to main content
Erschienen in: Shape Memory and Superelasticity 2/2015

01.06.2015

Multi-Scale Dynamics of Twinning in SMA

verfasst von: Eilon Faran, Doron Shilo

Erschienen in: Shape Memory and Superelasticity | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The mechanical response of shape memory alloys (SMA) is determined by the dynamics of discrete twin boundaries, and is quantified through constitutive material laws called kinetic relations. Extracting reliable kinetic relations, as well as revealing the physical characteristics of the energy barriers that dictate these relations, are essential for understanding and modeling the overall twinning phenomena. Here, we present a comprehensive, multi-scale study of discrete twin boundary dynamics in a ferromagnetic SMA, NiMnGa. The combination of dynamic-pulsed magnetic field experiments, in conjunction with low-rate uniaxial compression tests, leads to the identification of the dominant energy barriers for twinning. In particular, we show how different mechanisms of motion for overcoming the atomic-scale lattice potential give rise to several kinetic relations that are valid at different ranges of the driving force. In addition, a unique statistical analysis of the low-rate loading curve allows distinguishing between events at different length scales. This analysis leads to the identification of a characteristic length scale (~15 μm) for the distance between barriers that are responsible for the twinning stress property. This characteristic distance is in agreement with the typical thickness of the internal micro-twin structure, which was recently found in these materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Salje EK (1993) Phase transitions in ferroelastic and co-elastic crystals. Cambridge University Press, Cambridge Salje EK (1993) Phase transitions in ferroelastic and co-elastic crystals. Cambridge University Press, Cambridge
2.
Zurück zum Zitat Bhattacharya K (2003) Microstructure of martensite. Oxford University Press, Oxford Bhattacharya K (2003) Microstructure of martensite. Oxford University Press, Oxford
3.
Zurück zum Zitat Kanner OY, Shilo D, Sheng J, James RD, Ganor Y (2013) Ferromagnetic shape memory flapper for remotely actuated propulsion systems. Smart Mater Struct 22(8):085030CrossRef Kanner OY, Shilo D, Sheng J, James RD, Ganor Y (2013) Ferromagnetic shape memory flapper for remotely actuated propulsion systems. Smart Mater Struct 22(8):085030CrossRef
4.
Zurück zum Zitat Nespoli A, Besseghini S, Pittaccio S, Villa E, Viscuso S (2010) The high potential of shape memory alloys in developing miniature mechanical devices: a review on shape memory alloy mini-actuators. Sens Actuators A 158(1):149–160CrossRef Nespoli A, Besseghini S, Pittaccio S, Villa E, Viscuso S (2010) The high potential of shape memory alloys in developing miniature mechanical devices: a review on shape memory alloy mini-actuators. Sens Actuators A 158(1):149–160CrossRef
5.
Zurück zum Zitat Mohd Jani J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef Mohd Jani J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef
6.
Zurück zum Zitat Ganor Y, Shilo D, Zarrouati N, James RD (2009) Ferromagnetic shape memory flapper. Sens Actuators A 150(2):277–279CrossRef Ganor Y, Shilo D, Zarrouati N, James RD (2009) Ferromagnetic shape memory flapper. Sens Actuators A 150(2):277–279CrossRef
7.
Zurück zum Zitat Pagounis E, Laptev A, Jungwirth J, Laufenberg M, Fonin M (2014) Magnetomechanical properties of a high-temperature Ni–Mn–Ga magnetic shape memory actuator material. Scr Mater 88:17–20CrossRef Pagounis E, Laptev A, Jungwirth J, Laufenberg M, Fonin M (2014) Magnetomechanical properties of a high-temperature Ni–Mn–Ga magnetic shape memory actuator material. Scr Mater 88:17–20CrossRef
8.
Zurück zum Zitat Stephan JM, Pagounis E, Laufenberg M, Paul O, Ruther P (2011) A novel concept for strain sensing based on the ferromagnetic shape memory alloy NiMnGa. IEEE Sens J 11(11):2683–2689CrossRef Stephan JM, Pagounis E, Laufenberg M, Paul O, Ruther P (2011) A novel concept for strain sensing based on the ferromagnetic shape memory alloy NiMnGa. IEEE Sens J 11(11):2683–2689CrossRef
9.
Zurück zum Zitat Pagounis E, Chulist R, Szczerba MJ, Laufenberg M (2014) High-temperature magnetic shape memory actuation in a Ni–Mn–Ga single crystal. Scr Mater 83:29–32CrossRef Pagounis E, Chulist R, Szczerba MJ, Laufenberg M (2014) High-temperature magnetic shape memory actuation in a Ni–Mn–Ga single crystal. Scr Mater 83:29–32CrossRef
10.
Zurück zum Zitat Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39(1–2):1–157CrossRef Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39(1–2):1–157CrossRef
11.
Zurück zum Zitat Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51(4):427–556CrossRef Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51(4):427–556CrossRef
12.
Zurück zum Zitat Zhu YT, Liao XZ, Wu XL (2012) Deformation twinning in nanocrystalline materials. Prog Mater Sci 57(1):1–62CrossRef Zhu YT, Liao XZ, Wu XL (2012) Deformation twinning in nanocrystalline materials. Prog Mater Sci 57(1):1–62CrossRef
13.
Zurück zum Zitat Asaro RJ, Krysl P, Kad B (2003) Deformation mechanism transitions in nanoscale fcc metals. Philos Mag Lett 83(12):733–743CrossRef Asaro RJ, Krysl P, Kad B (2003) Deformation mechanism transitions in nanoscale fcc metals. Philos Mag Lett 83(12):733–743CrossRef
14.
Zurück zum Zitat Bhattacharya K, Ravichandran G (2003) Ferroelectric perovskites for electromechanical actuation. Acta Mater 51(19):5941–5960CrossRef Bhattacharya K, Ravichandran G (2003) Ferroelectric perovskites for electromechanical actuation. Acta Mater 51(19):5941–5960CrossRef
15.
Zurück zum Zitat Abeyaratne R, Knowles JK (2006) Evolution of phase transitions: a continuum theory. Cambridge University Press, CambridgeCrossRef Abeyaratne R, Knowles JK (2006) Evolution of phase transitions: a continuum theory. Cambridge University Press, CambridgeCrossRef
16.
Zurück zum Zitat Ezer Y, Sozinov O, Straka L, Soroka A, Lanska N ‘Magnetic Shape Memory Alloys And Specimens Thereof’, European Patent Number EP2710161, 2012, Filing Date: 21.05.2012, Publication Date: 2029.2011.2012 Ezer Y, Sozinov O, Straka L, Soroka A, Lanska N ‘Magnetic Shape Memory Alloys And Specimens Thereof’, European Patent Number EP2710161, 2012, Filing Date: 21.05.2012, Publication Date: 2029.2011.2012
17.
Zurück zum Zitat Dayal K, Bhattacharya K (2007) A real-space non-local phase-field model of ferroelectric domain patterns in complex geometries. Acta Mater 55(6):1907–1917CrossRef Dayal K, Bhattacharya K (2007) A real-space non-local phase-field model of ferroelectric domain patterns in complex geometries. Acta Mater 55(6):1907–1917CrossRef
18.
Zurück zum Zitat Li LJ, Lei CH, Shu YC, Li JY (2011) Phase-field simulation of magnetoelastic couplings in ferromagnetic shape memory alloys. Acta Mater 59(7):2648–2655CrossRef Li LJ, Lei CH, Shu YC, Li JY (2011) Phase-field simulation of magnetoelastic couplings in ferromagnetic shape memory alloys. Acta Mater 59(7):2648–2655CrossRef
19.
Zurück zum Zitat Hildebrand FE, Miehe C (2012) A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains. Philos Mag 92(34):4250–4290CrossRef Hildebrand FE, Miehe C (2012) A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains. Philos Mag 92(34):4250–4290CrossRef
20.
Zurück zum Zitat Hlinka J, Ondrejkovic P, Marton P (2009) The piezoelectric response of nanotwinned BaTiO3. Nanotechnology 20(10):105709CrossRef Hlinka J, Ondrejkovic P, Marton P (2009) The piezoelectric response of nanotwinned BaTiO3. Nanotechnology 20(10):105709CrossRef
21.
Zurück zum Zitat Tsou NT, Huber JE, Cocks ACF (2013) Evolution of compatible laminate domain structures in ferroelectric single crystals. Acta Mater 61(2):670–682CrossRef Tsou NT, Huber JE, Cocks ACF (2013) Evolution of compatible laminate domain structures in ferroelectric single crystals. Acta Mater 61(2):670–682CrossRef
22.
Zurück zum Zitat Shilo D, Burcsu E, Ravichandran G, Bhattacharya K (2007) A model for large electrostrictive actuation in ferroelectric single crystals. Int J Solids Struct 44(6):2053–2065CrossRef Shilo D, Burcsu E, Ravichandran G, Bhattacharya K (2007) A model for large electrostrictive actuation in ferroelectric single crystals. Int J Solids Struct 44(6):2053–2065CrossRef
23.
Zurück zum Zitat Daphalapurkar NP, Wilkerson JW, Wright TW, Ramesh KT (2014) Kinetics of a fast moving twin boundary in nickel. Acta Mater 68:82–92CrossRef Daphalapurkar NP, Wilkerson JW, Wright TW, Ramesh KT (2014) Kinetics of a fast moving twin boundary in nickel. Acta Mater 68:82–92CrossRef
24.
Zurück zum Zitat Salje EKH, Ding X, Zhao Z, Lookman T, Saxena A (2011) Thermally activated avalanches: jamming and the progression of needle domains. Phys Rev B 83(10):104109CrossRef Salje EKH, Ding X, Zhao Z, Lookman T, Saxena A (2011) Thermally activated avalanches: jamming and the progression of needle domains. Phys Rev B 83(10):104109CrossRef
25.
Zurück zum Zitat Lu C-T, Dayal K (2011) Linear instability signals the initiation of motion of a twin plane under load. Philos Mag Lett 91(4):264–271CrossRef Lu C-T, Dayal K (2011) Linear instability signals the initiation of motion of a twin plane under load. Philos Mag Lett 91(4):264–271CrossRef
26.
Zurück zum Zitat Hildebrand FE, Abeyaratne R (2008) An atomistic investigation of the kinetics of detwinning. J Mech Phys Solids 56(4):1296–1319CrossRef Hildebrand FE, Abeyaratne R (2008) An atomistic investigation of the kinetics of detwinning. J Mech Phys Solids 56(4):1296–1319CrossRef
27.
Zurück zum Zitat Rice JR (1992) Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J Mech Phys Solids 40(2):239–271CrossRef Rice JR (1992) Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J Mech Phys Solids 40(2):239–271CrossRef
28.
Zurück zum Zitat Van Swygenhoven H, Weertman JR (2006) Deformation in nanocrystalline metals. Mater Today 9(5):24–31CrossRef Van Swygenhoven H, Weertman JR (2006) Deformation in nanocrystalline metals. Mater Today 9(5):24–31CrossRef
29.
Zurück zum Zitat Kucherov L, Tadmor EB (2007) Twin nucleation mechanisms at a crack tip in an hcp material: molecular simulation. Acta Mater 55(6):2065–2074CrossRef Kucherov L, Tadmor EB (2007) Twin nucleation mechanisms at a crack tip in an hcp material: molecular simulation. Acta Mater 55(6):2065–2074CrossRef
30.
Zurück zum Zitat Straka L, Lanska N, Ullakko K, Sozinov A (2010) Twin microstructure dependent mechanical response in Ni–Mn–Ga single crystals. Appl Phys Lett 96(13):131903CrossRef Straka L, Lanska N, Ullakko K, Sozinov A (2010) Twin microstructure dependent mechanical response in Ni–Mn–Ga single crystals. Appl Phys Lett 96(13):131903CrossRef
31.
Zurück zum Zitat Straka L, Hänninen H, Soroka A, Sozinov A (2011) Ni-Mn-Ga single crystals with very low twinning stress. J Phys Conf Ser 303(1):012079CrossRef Straka L, Hänninen H, Soroka A, Sozinov A (2011) Ni-Mn-Ga single crystals with very low twinning stress. J Phys Conf Ser 303(1):012079CrossRef
32.
Zurück zum Zitat Aaltio I, Söderberg O, Ge Y, Hannula S-P (2010) Twin boundary nucleation and motion in Ni–Mn–Ga magnetic shape memory material with a low twinning stress. Scr Mater 62(1):9–12CrossRef Aaltio I, Söderberg O, Ge Y, Hannula S-P (2010) Twin boundary nucleation and motion in Ni–Mn–Ga magnetic shape memory material with a low twinning stress. Scr Mater 62(1):9–12CrossRef
33.
Zurück zum Zitat Faran E, Shilo D (2013) The kinetic relation for twin wall motion in NiMnGa—part 2. J Mech Phys Solids 61(3):726–741CrossRef Faran E, Shilo D (2013) The kinetic relation for twin wall motion in NiMnGa—part 2. J Mech Phys Solids 61(3):726–741CrossRef
34.
Zurück zum Zitat Kibey SA, Wang LL, Liu JB, Johnson HT, Sehitoglu H, Johnson DD (2009) Quantitative prediction of twinning stress in fcc alloys: application to Cu-Al. Phys Rev B 79(21):214202CrossRef Kibey SA, Wang LL, Liu JB, Johnson HT, Sehitoglu H, Johnson DD (2009) Quantitative prediction of twinning stress in fcc alloys: application to Cu-Al. Phys Rev B 79(21):214202CrossRef
35.
Zurück zum Zitat Abeyaratne R, Chu C, James RD (1996) Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy. Philos Mag A 73(2):457–497CrossRef Abeyaratne R, Chu C, James RD (1996) Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy. Philos Mag A 73(2):457–497CrossRef
36.
Zurück zum Zitat Kibey S, Sehitoglu H, Johnson DD (2009) Energy landscape for martensitic phase transformation in shape memory NiTi. Acta Mater 57(5):1624–1629CrossRef Kibey S, Sehitoglu H, Johnson DD (2009) Energy landscape for martensitic phase transformation in shape memory NiTi. Acta Mater 57(5):1624–1629CrossRef
37.
Zurück zum Zitat Lee WT, Salje EKH, Goncalves-Ferreira L, Daraktchiev M, Bismayer U (2006) Intrinsic activation energy for twin-wall motion in the ferroelastic perovskite CaTiO_{3}. Phys Rev B 73(21):214110CrossRef Lee WT, Salje EKH, Goncalves-Ferreira L, Daraktchiev M, Bismayer U (2006) Intrinsic activation energy for twin-wall motion in the ferroelastic perovskite CaTiO_{3}. Phys Rev B 73(21):214110CrossRef
38.
Zurück zum Zitat Truskinovsky L, Vainchtein A (2003) Peierls-Nabarro landscape for martensitic phase transitions. Phys Rev B 67(17):172103CrossRef Truskinovsky L, Vainchtein A (2003) Peierls-Nabarro landscape for martensitic phase transitions. Phys Rev B 67(17):172103CrossRef
39.
Zurück zum Zitat Faran E, Shilo D (2011) The kinetic relation for twin wall motion in NiMnGa. J Mech Phys Solids 59(5):975–987CrossRef Faran E, Shilo D (2011) The kinetic relation for twin wall motion in NiMnGa. J Mech Phys Solids 59(5):975–987CrossRef
40.
Zurück zum Zitat Pond RC, Celotto S (2003) Special interfaces: military transformations. Int Mater Rev 48(4):225–245CrossRef Pond RC, Celotto S (2003) Special interfaces: military transformations. Int Mater Rev 48(4):225–245CrossRef
41.
Zurück zum Zitat Howe JM, Pond RC, Hirth JP (2009) The role of disconnections in phase transformations. Prog Mater Sci 54(6):792–838CrossRef Howe JM, Pond RC, Hirth JP (2009) The role of disconnections in phase transformations. Prog Mater Sci 54(6):792–838CrossRef
42.
43.
Zurück zum Zitat Paul DI, McGehee W, O’Handley RC, Richard M (2007) Ferromagnetic shape memory alloys: a theoretical approach. J Appl Phys 101(12):123917CrossRef Paul DI, McGehee W, O’Handley RC, Richard M (2007) Ferromagnetic shape memory alloys: a theoretical approach. J Appl Phys 101(12):123917CrossRef
44.
Zurück zum Zitat Chmielus M, Glavatskyy I, Hoffmann J-U, Chernenko VA, Schneider R, Müllner P (2011) Influence of constraints and twinning stress on magnetic field-induced strain of magnetic shape-memory alloys. Scr Mater 64(9):888–891CrossRef Chmielus M, Glavatskyy I, Hoffmann J-U, Chernenko VA, Schneider R, Müllner P (2011) Influence of constraints and twinning stress on magnetic field-induced strain of magnetic shape-memory alloys. Scr Mater 64(9):888–891CrossRef
45.
Zurück zum Zitat Heczko O (2014) Magnetic shape memory effect and highly mobile twin boundaries. Mater Sci Technol 30(13a):1559–1578CrossRef Heczko O (2014) Magnetic shape memory effect and highly mobile twin boundaries. Mater Sci Technol 30(13a):1559–1578CrossRef
46.
Zurück zum Zitat Seiner H, Straka L, Heczko O (2014) A microstructural model of motion of macro-twin interfaces in Ni–Mn–Ga 10 M martensite. J Mech Phys Solids 64:198–211CrossRef Seiner H, Straka L, Heczko O (2014) A microstructural model of motion of macro-twin interfaces in Ni–Mn–Ga 10 M martensite. J Mech Phys Solids 64:198–211CrossRef
47.
Zurück zum Zitat Faran E, Shilo D (2014) Dynamics of twin boundaries in ferromagnetic shape memory alloys. Mater Sci Technol 30(13a):1545–1558CrossRef Faran E, Shilo D (2014) Dynamics of twin boundaries in ferromagnetic shape memory alloys. Mater Sci Technol 30(13a):1545–1558CrossRef
48.
Zurück zum Zitat Faran E, Shilo D (2010) Twin motion faster than the speed of sound. Phys Rev Lett 104(15):155501CrossRef Faran E, Shilo D (2010) Twin motion faster than the speed of sound. Phys Rev Lett 104(15):155501CrossRef
49.
Zurück zum Zitat Hirth J, Lothe J (1982) Theory of dislocations. John Wiley & Sons, New York Hirth J, Lothe J (1982) Theory of dislocations. John Wiley & Sons, New York
50.
Zurück zum Zitat Nadgornyi E (1988) Dislocation dynamics and mechanical properties of crystals. Pergamon Press, Oxford Nadgornyi E (1988) Dislocation dynamics and mechanical properties of crystals. Pergamon Press, Oxford
51.
Zurück zum Zitat Frost HJ, Ashby F (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press, Oxford Frost HJ, Ashby F (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press, Oxford
52.
Zurück zum Zitat Hiratani M, Nadgorny EM (2001) Combined model of dislocation motion with thermally activated and drag-dependent stages. Acta Mater 49(20):4337–4346CrossRef Hiratani M, Nadgorny EM (2001) Combined model of dislocation motion with thermally activated and drag-dependent stages. Acta Mater 49(20):4337–4346CrossRef
53.
Zurück zum Zitat Faran E, Shilo D (2012) Implications of twinning kinetics on the frequency response in NiMnGa actuators. Appl Phys Lett 100(15):151901–151904CrossRef Faran E, Shilo D (2012) Implications of twinning kinetics on the frequency response in NiMnGa actuators. Appl Phys Lett 100(15):151901–151904CrossRef
54.
Zurück zum Zitat Sethna JP, Dahmen KA, Myers CR (2001) Crackling noise. Nature 410(6825):242–250CrossRef Sethna JP, Dahmen KA, Myers CR (2001) Crackling noise. Nature 410(6825):242–250CrossRef
55.
Zurück zum Zitat Chulist R, Straka L, Lanska N, Soroka A, Sozinov A, Skrotzki W (2013) Characterization of mobile type I and type II twin boundaries in 10 M modulated Ni–Mn–Ga martensite by electron backscatter diffraction. Acta Mater 61(6):1913–1920CrossRef Chulist R, Straka L, Lanska N, Soroka A, Sozinov A, Skrotzki W (2013) Characterization of mobile type I and type II twin boundaries in 10 M modulated Ni–Mn–Ga martensite by electron backscatter diffraction. Acta Mater 61(6):1913–1920CrossRef
56.
Zurück zum Zitat Heczko O, Kopeček J, Straka L, Seiner H (2013) Differently mobile twin boundaries and magnetic shape memory effect in 10 M martensite of Ni–Mn–Ga. Mater Res Bull 48(12):5105–5109CrossRef Heczko O, Kopeček J, Straka L, Seiner H (2013) Differently mobile twin boundaries and magnetic shape memory effect in 10 M martensite of Ni–Mn–Ga. Mater Res Bull 48(12):5105–5109CrossRef
57.
Zurück zum Zitat Heczko O, Straka L, Seiner H (2013) Different microstructures of mobile twin boundaries in 10 M modulated Ni–Mn–Ga martensite. Acta Mater 61(2):622–631CrossRef Heczko O, Straka L, Seiner H (2013) Different microstructures of mobile twin boundaries in 10 M modulated Ni–Mn–Ga martensite. Acta Mater 61(2):622–631CrossRef
58.
Zurück zum Zitat Faran E, Salje EKH, Shilo D (under review) The exploration of the effect of microstructure on crackling noise systems. Phys Rev Lett Faran E, Salje EKH, Shilo D (under review) The exploration of the effect of microstructure on crackling noise systems. Phys Rev Lett
59.
Zurück zum Zitat Niemann R, Baró J, Heczko O, Schultz L, Fähler S, Vives E, Mañosa L, Planes A (2012) Tuning avalanche criticality: acoustic emission during the martensitic transformation of a compressed Ni-Mn-Ga single crystal. Phys Rev B 86(21):214101CrossRef Niemann R, Baró J, Heczko O, Schultz L, Fähler S, Vives E, Mañosa L, Planes A (2012) Tuning avalanche criticality: acoustic emission during the martensitic transformation of a compressed Ni-Mn-Ga single crystal. Phys Rev B 86(21):214101CrossRef
60.
Zurück zum Zitat Balogh Z, Daróczi L, Harasztosi L, Beke DL, Lograsso TA, Schlagel DL (2006) Magnetic emission during austenite-martensite transformation in Ni2MnGa shape memory alloy. Mater Trans 47(3):631–634CrossRef Balogh Z, Daróczi L, Harasztosi L, Beke DL, Lograsso TA, Schlagel DL (2006) Magnetic emission during austenite-martensite transformation in Ni2MnGa shape memory alloy. Mater Trans 47(3):631–634CrossRef
61.
Zurück zum Zitat Baró J, Dixon S, Edwards RS, Fan Y, Keeble DS, Mañosa L, Planes A, Vives E (2013) Simultaneous detection of acoustic emission and Barkhausen noise during the martensitic transition of a Ni-Mn-Ga magnetic shape-memory alloy. Phys Rev B 88(17):174108CrossRef Baró J, Dixon S, Edwards RS, Fan Y, Keeble DS, Mañosa L, Planes A, Vives E (2013) Simultaneous detection of acoustic emission and Barkhausen noise during the martensitic transition of a Ni-Mn-Ga magnetic shape-memory alloy. Phys Rev B 88(17):174108CrossRef
62.
Zurück zum Zitat Niemann R, Kopeček J, Heczko O, Romberg J, Schultz L, Fähler S, Vives E, Mañosa L, Planes A (2014) Localizing sources of acoustic emission during the martensitic transformation. Phys Rev B 89(21):214118CrossRef Niemann R, Kopeček J, Heczko O, Romberg J, Schultz L, Fähler S, Vives E, Mañosa L, Planes A (2014) Localizing sources of acoustic emission during the martensitic transformation. Phys Rev B 89(21):214118CrossRef
63.
Zurück zum Zitat Sethna JP (2007) Statistical mechanics: crackling crossover. Nat Phys 3(8):518–519CrossRef Sethna JP (2007) Statistical mechanics: crackling crossover. Nat Phys 3(8):518–519CrossRef
64.
Zurück zum Zitat Salje EKH, Dahmen KA (2014) Crackling noise in disordered materials. Annu Rev Condens Matter Phys 5(1):233–254CrossRef Salje EKH, Dahmen KA (2014) Crackling noise in disordered materials. Annu Rev Condens Matter Phys 5(1):233–254CrossRef
Metadaten
Titel
Multi-Scale Dynamics of Twinning in SMA
verfasst von
Eilon Faran
Doron Shilo
Publikationsdatum
01.06.2015
Verlag
Springer International Publishing
Erschienen in
Shape Memory and Superelasticity / Ausgabe 2/2015
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-015-0012-5

Weitere Artikel der Ausgabe 2/2015

Shape Memory and Superelasticity 2/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.