Skip to main content

2018 | OriginalPaper | Buchkapitel

6. Multi-start Methods

verfasst von : Rafael Martí, Jose A. Lozano, Alexander Mendiburu, Leticia Hernando

Erschienen in: Handbook of Heuristics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multi-start procedures were originally conceived as a way to exploit a local or neighborhood search procedure, by simply applying it from multiple random initial solutions. Modern multi-start methods usually incorporate a powerful form of diversification in the generation of solutions to help overcome local optimality. Different metaheuristics, such as GRASP or tabu search, have been applied to this end. This survey briefly sketches historical developments that have motivated the field and then focuses on modern contributions that define the current state of the art. Two classical categories of multi-start methods are considered according to their domain of application: global optimization and combinatorial optimization. Additionally, several methods are reviewed to estimate the number of local optima in combinatorial problems. The estimation of this number can help to establish the complexity of a given instance, and also to choose the most convenient neighborhood, which is especially interesting in the context of multi-start methods. Experiments on three well-known combinatorial optimization problems are included to illustrate the local optima estimation techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Albrecht A, Lane P, Steinhofel K (2008) Combinatorial landscape analysis for k-SAT instances. In: IEEE congress on evolutionary computation, CEC 2008, Hong Kong. IEEE World congress on computational intelligence, pp 2498–2504 Albrecht A, Lane P, Steinhofel K (2008) Combinatorial landscape analysis for k-SAT instances. In: IEEE congress on evolutionary computation, CEC 2008, Hong Kong. IEEE World congress on computational intelligence, pp 2498–2504
2.
Zurück zum Zitat Albrecht A, Lane P, Steinhofel K (2010) Analysis of local search landscapes for k-SAT instances. Math Comput Sci 3(4):465–488MathSciNetCrossRef Albrecht A, Lane P, Steinhofel K (2010) Analysis of local search landscapes for k-SAT instances. Math Comput Sci 3(4):465–488MathSciNetCrossRef
3.
Zurück zum Zitat Beausoleil R, Baldoquin G, Montejo R (2008) A multi-start and path relinking methods to deal with multiobjective knapsack problems. Ann Oper Res 157:105–133MathSciNetCrossRef Beausoleil R, Baldoquin G, Montejo R (2008) A multi-start and path relinking methods to deal with multiobjective knapsack problems. Ann Oper Res 157:105–133MathSciNetCrossRef
4.
Zurück zum Zitat Boese K, Kahng A, Muddu S (1994) A new adaptive multi-start technique for combinatorial global optimisation. Oper Res Lett 16:103–113CrossRef Boese K, Kahng A, Muddu S (1994) A new adaptive multi-start technique for combinatorial global optimisation. Oper Res Lett 16:103–113CrossRef
5.
Zurück zum Zitat Braysy O, Hasle G, Dullaert W (2004) A multi-start local search algorithm for the vehicle routing problem with time windows. Eur J Oper Res 159:586–605MathSciNetCrossRef Braysy O, Hasle G, Dullaert W (2004) A multi-start local search algorithm for the vehicle routing problem with time windows. Eur J Oper Res 159:586–605MathSciNetCrossRef
6.
Zurück zum Zitat Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11(4):265–270MathSciNet Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11(4):265–270MathSciNet
7.
Zurück zum Zitat Chao A, Bunge J (2002) Estimating the number of species in a stochastic abundance model. Biometrics 58(3):531–539MathSciNetCrossRef Chao A, Bunge J (2002) Estimating the number of species in a stochastic abundance model. Biometrics 58(3):531–539MathSciNetCrossRef
8.
Zurück zum Zitat Chao A, Lee SM (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87(417):210–217MathSciNetCrossRef Chao A, Lee SM (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87(417):210–217MathSciNetCrossRef
9.
Zurück zum Zitat Crowston WB, Glover F, Thompson GL, Trawick JD (1963) Probabilistic and parametric learning combinations of local job shop scheduling rules. Technical report 117, Carnegie-Mellon University, Pittsburgh Crowston WB, Glover F, Thompson GL, Trawick JD (1963) Probabilistic and parametric learning combinations of local job shop scheduling rules. Technical report 117, Carnegie-Mellon University, Pittsburgh
10.
Zurück zum Zitat Dhouib S, Kharrat A, Chabchoub H (2010) A multi-start threshold accepting algorithm for multiple objective continuous optimization problems. Int J Numer Methods Eng 83:1498–1517MathSciNetCrossRef Dhouib S, Kharrat A, Chabchoub H (2010) A multi-start threshold accepting algorithm for multiple objective continuous optimization problems. Int J Numer Methods Eng 83:1498–1517MathSciNetCrossRef
11.
Zurück zum Zitat Eremeev AV, Reeves CR (2002) Non-parametric estimation of properties of combinatorial landscapes. In: Cagnoni S, Gottlieb J, Hart E, Middendorf M, Raidl G (eds) Applications of evolutionary computing. Lecture notes in computer science, vol 2279. Springer, Berlin/Heidelberg, pp 31–40CrossRef Eremeev AV, Reeves CR (2002) Non-parametric estimation of properties of combinatorial landscapes. In: Cagnoni S, Gottlieb J, Hart E, Middendorf M, Raidl G (eds) Applications of evolutionary computing. Lecture notes in computer science, vol 2279. Springer, Berlin/Heidelberg, pp 31–40CrossRef
12.
Zurück zum Zitat Eremeev AV, Reeves CR (2003) On confidence intervals for the number of local optima. In: Proceedings of EvoWorkshops 2003, Essex, pp 224–235 Eremeev AV, Reeves CR (2003) On confidence intervals for the number of local optima. In: Proceedings of EvoWorkshops 2003, Essex, pp 224–235
13.
Zurück zum Zitat Essafi M, Delorme X, Dolgui A (2010) Balancing lines with CNC machines: a multi-start and based heuristic. CIRP J Manuf Sci Technol 2:176–182CrossRef Essafi M, Delorme X, Dolgui A (2010) Balancing lines with CNC machines: a multi-start and based heuristic. CIRP J Manuf Sci Technol 2:176–182CrossRef
14.
Zurück zum Zitat Feo T, Resende M (1989) A probabilistic heuristic for a computationally difficult set covering problem. Oper Res Lett 8:67–71MathSciNetCrossRef Feo T, Resende M (1989) A probabilistic heuristic for a computationally difficult set covering problem. Oper Res Lett 8:67–71MathSciNetCrossRef
16.
Zurück zum Zitat Fleurent C, Glover F (1999) Improved constructive multi-start strategies for the quadratic assignment problem using adaptive memory. INFORMS J Comput 11:198–204MathSciNetCrossRef Fleurent C, Glover F (1999) Improved constructive multi-start strategies for the quadratic assignment problem using adaptive memory. INFORMS J Comput 11:198–204MathSciNetCrossRef
17.
Zurück zum Zitat Glover F (2000) Multi-start and strategic oscillation methods – principles to exploit adaptive memory. In: Laguna M, Gonzalez-Velarde J (eds) Computing tools for modeling optimization and simulation. Kluwer Academic, Boston, pp 1–25 Glover F (2000) Multi-start and strategic oscillation methods – principles to exploit adaptive memory. In: Laguna M, Gonzalez-Velarde J (eds) Computing tools for modeling optimization and simulation. Kluwer Academic, Boston, pp 1–25
18.
19.
Zurück zum Zitat Grundel D, Krokhmal P, Oliveira C, Pardalos P (2007) On the number of local minima for the multidimensional assignment problem. J Combin Optim 13:1–18MathSciNetCrossRef Grundel D, Krokhmal P, Oliveira C, Pardalos P (2007) On the number of local minima for the multidimensional assignment problem. J Combin Optim 13:1–18MathSciNetCrossRef
20.
Zurück zum Zitat Hagen L, Kahng A (1997) Combining problem reduction and adaptive multi-start: a new technique for superior iterative partitioning. IEEE Trans CAD 16:709–717CrossRef Hagen L, Kahng A (1997) Combining problem reduction and adaptive multi-start: a new technique for superior iterative partitioning. IEEE Trans CAD 16:709–717CrossRef
21.
22.
Zurück zum Zitat Hernando L, Mendiburu A, Lozano JA (2013) An evaluation of methods for estimating the number of local optima in combinatorial optimization problems. Evol Comput 21(4):625–658CrossRef Hernando L, Mendiburu A, Lozano JA (2013) An evaluation of methods for estimating the number of local optima in combinatorial optimization problems. Evol Comput 21(4):625–658CrossRef
23.
Zurück zum Zitat Hickernell F, Yuan Y (1997) A simple multistart algorithm for global optimization. OR Trans 1:1–11 Hickernell F, Yuan Y (1997) A simple multistart algorithm for global optimization. OR Trans 1:1–11
24.
Zurück zum Zitat Hu X, Shonkwiler R, Spruill M (1994) Random restarts in global optimization. Ga Inst Technol 1:1–10 Hu X, Shonkwiler R, Spruill M (1994) Random restarts in global optimization. Ga Inst Technol 1:1–10
25.
Zurück zum Zitat Kan AR, Timmer G (1987) Stochastic global optimization methods (Part II): multi level methods. Math Program 39:57–78CrossRef Kan AR, Timmer G (1987) Stochastic global optimization methods (Part II): multi level methods. Math Program 39:57–78CrossRef
26.
Zurück zum Zitat Kan AR, Timmer G (1998) Global optimization. In: Kan R, Todds (eds) Handbooks in operations research and management science. North Holland, Amsterdam, pp 631–662 Kan AR, Timmer G (1998) Global optimization. In: Kan R, Todds (eds) Handbooks in operations research and management science. North Holland, Amsterdam, pp 631–662
27.
Zurück zum Zitat Kaucic M (2013) A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained global optimization. J Glob Optim 55:165–188MathSciNetCrossRef Kaucic M (2013) A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained global optimization. J Glob Optim 55:165–188MathSciNetCrossRef
28.
Zurück zum Zitat Lan G, DePuy G (2006) On the effectiveness of incorporating randomness and memory into a multi-start metaheuristic with application to the set covering problem. Comput Ind Eng 51:362–374CrossRef Lan G, DePuy G (2006) On the effectiveness of incorporating randomness and memory into a multi-start metaheuristic with application to the set covering problem. Comput Ind Eng 51:362–374CrossRef
29.
Zurück zum Zitat Martí R, Reinelt G, Duarte A (2012) A benchmark library and a comparison of heuristic methods for the linear ordering problem. Comput Optim Appl 51(3):1297–1317MathSciNetCrossRef Martí R, Reinelt G, Duarte A (2012) A benchmark library and a comparison of heuristic methods for the linear ordering problem. Comput Optim Appl 51(3):1297–1317MathSciNetCrossRef
30.
Zurück zum Zitat Martí R, Resende M, Ribeiro C (2013) Multi-start methods for combinatorial optimization. Eur J Oper Res 226(1):1–8MathSciNetCrossRef Martí R, Resende M, Ribeiro C (2013) Multi-start methods for combinatorial optimization. Eur J Oper Res 226(1):1–8MathSciNetCrossRef
31.
Zurück zum Zitat Mayne DQ, Meewella C (1988) A non-clustering multistart algorithm for global optimization. In: Bensoussan A, Lions J-L (eds) Analysis and optimization of systems. Lecture notes in control and information sciences. Springer, Berlin/New York, pp 111–117MATH Mayne DQ, Meewella C (1988) A non-clustering multistart algorithm for global optimization. In: Bensoussan A, Lions J-L (eds) Analysis and optimization of systems. Lecture notes in control and information sciences. Springer, Berlin/New York, pp 111–117MATH
32.
Zurück zum Zitat Mezmaz M, Melab N, Talbi E (2006) Using the multi-start and island models for parallel multi-objective optimization on the computational grid. In: Second IEEE international conference on e-science and grid computing, AmsterdamCrossRef Mezmaz M, Melab N, Talbi E (2006) Using the multi-start and island models for parallel multi-objective optimization on the computational grid. In: Second IEEE international conference on e-science and grid computing, AmsterdamCrossRef
33.
Zurück zum Zitat Moreno J, Mladenovic N, Moreno-Vega J (1995) An statistical analysis of strategies for multistart heuristic searches for p-facility location-allocation problems. In: Eighth meeting of the EWG on locational analysis Lambrecht Moreno J, Mladenovic N, Moreno-Vega J (1995) An statistical analysis of strategies for multistart heuristic searches for p-facility location-allocation problems. In: Eighth meeting of the EWG on locational analysis Lambrecht
34.
Zurück zum Zitat Muth JF, Thompson GL (1963) Industrial scheduling. Prentice-Hall, Englewood Cliffs Muth JF, Thompson GL (1963) Industrial scheduling. Prentice-Hall, Englewood Cliffs
35.
Zurück zum Zitat Patterson R, Pirkul H, Rolland E (1999) Adaptive reasoning technique for the capacitated minimum spanning tree problem. J Heuristics 5:159–180CrossRef Patterson R, Pirkul H, Rolland E (1999) Adaptive reasoning technique for the capacitated minimum spanning tree problem. J Heuristics 5:159–180CrossRef
36.
Zurück zum Zitat Reeves C, Aupetit-Bélaidouni M (2004) Estimating the number of solutions for SAT problems. In: Yao X, Burke E, Lozano J, Smith J, Merelo-Guervós J, Bullinaria J, Rowe J, Tino P, Kabán A, Schwefel HP (eds) Parallel problem solving from nature – PPSN VIII. Lecture notes in computer science, vol 3242. Springer, Berlin/Heidelberg, pp 101–110 Reeves C, Aupetit-Bélaidouni M (2004) Estimating the number of solutions for SAT problems. In: Yao X, Burke E, Lozano J, Smith J, Merelo-Guervós J, Bullinaria J, Rowe J, Tino P, Kabán A, Schwefel HP (eds) Parallel problem solving from nature – PPSN VIII. Lecture notes in computer science, vol 3242. Springer, Berlin/Heidelberg, pp 101–110
37.
Zurück zum Zitat Resende M, Ribeiro C (2010) Greedy randomized adaptive search procedures: advances and applications. In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics, 2nd edn. Springer, New York, pp 293–319 Resende M, Ribeiro C (2010) Greedy randomized adaptive search procedures: advances and applications. In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics, 2nd edn. Springer, New York, pp 293–319
39.
Zurück zum Zitat Taillard E, Badeau P, Gendreau M, Guertin F, Potvin J (1997) A tabu search heuristic of the vehicle routing problem with time windows. Transp Sci 31:170–186CrossRef Taillard E, Badeau P, Gendreau M, Guertin F, Potvin J (1997) A tabu search heuristic of the vehicle routing problem with time windows. Transp Sci 31:170–186CrossRef
40.
Zurück zum Zitat Tu W, Mayne R (2002) An approach to multi-start clustering for global optimization with non-linear constraints. Int J Numer Methods Eng 53:2253–2269MathSciNetCrossRef Tu W, Mayne R (2002) An approach to multi-start clustering for global optimization with non-linear constraints. Int J Numer Methods Eng 53:2253–2269MathSciNetCrossRef
41.
Zurück zum Zitat Ugray Z, Lasdon L, Plummer J, Glover F, Kelly J, Martí R (2007) Scatter search and local NLP solvers: a multistart framework for global optimization. INFORMS J Comput 19(3):328–340MathSciNetCrossRef Ugray Z, Lasdon L, Plummer J, Glover F, Kelly J, Martí R (2007) Scatter search and local NLP solvers: a multistart framework for global optimization. INFORMS J Comput 19(3):328–340MathSciNetCrossRef
42.
Zurück zum Zitat Ugray Z, Lasdon L, Plummer J, Bussieck M (2009) Dynamic filters and randomized drivers for the multi-start global optimization algorithm MSNLP. Optim Methods Softw 24:4–5MathSciNetCrossRef Ugray Z, Lasdon L, Plummer J, Bussieck M (2009) Dynamic filters and randomized drivers for the multi-start global optimization algorithm MSNLP. Optim Methods Softw 24:4–5MathSciNetCrossRef
43.
Zurück zum Zitat Villegas J, Prins C, Prodhon C, Medaglia A, Velasco N (2010) GRASP/VND and multi-start evolutionary local search for the single truck and trailer routing problem with satellite depots. Eng Appl Artif Intell 23:780–794CrossRef Villegas J, Prins C, Prodhon C, Medaglia A, Velasco N (2010) GRASP/VND and multi-start evolutionary local search for the single truck and trailer routing problem with satellite depots. Eng Appl Artif Intell 23:780–794CrossRef
Metadaten
Titel
Multi-start Methods
verfasst von
Rafael Martí
Jose A. Lozano
Alexander Mendiburu
Leticia Hernando
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-07124-4_1