Skip to main content

12.03.2025 | Original Paper

Multi-step ahead wind power forecasting based on multi-feature wavelet decomposition and convolution-gated recurrent unit model

verfasst von: Shubham Shringi, Lalit Mohan Saini, Sanjeev Kumar Aggarwal

Erschienen in: Electrical Engineering

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Accurate short-term wind power forecasting (STWPF) is essential for grid operators and energy traders, particularly for managing grid stability and supporting utility energy dispatch in the short term. This research introduces a hybrid approaches that integrates multi-feature wavelet decomposition (MFWD) technique with convolution-gated recurrent unit (CGRU) to improve forecasting accuracy. The model is validated using historical data from the supervisory control and data acquisition (SCADA) system of the Kelmarsh wind farm (KWF). The MFWD pre-processing technique is employed to denoise the input features by decomposing each feature into detailed (high-frequency) and approximate (low-frequency) coefficients. This decomposition improves feature quality and enhances their Pearson's correlation coefficient (PCC), ensuring more relevant and robust inputs. The pre-processed dataset is then fed into the CGRU model, where convolutional layers extract deep spatial features, and GRU layers effectively capture temporal dependencies. The results demonstrate that the proposed hybrid MFWD–CGRU approach significantly outperforms the conventional CGRU model by 3.5% to 6.1% in multi-step forecasts horizons ranging from 1 to 24 h ahead. The proposed model effectively reduces noise, improves feature relevance, and enhances overall forecasting accuracy. These improvements support better decision-making, strengthen grid reliability, and boost operational effectiveness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
7.
Zurück zum Zitat Bofinger G, Stefan S, Heilscher K (2006) Solar elctricity forecast approaches and first results. In: Proceedings of the 21st European photovoltaic solar energy conference and exhibition, pp 1–5 Bofinger G, Stefan S, Heilscher K (2006) Solar elctricity forecast approaches and first results. In: Proceedings of the 21st European photovoltaic solar energy conference and exhibition, pp 1–5
36.
Zurück zum Zitat Aitken W, Negnevitsky M, Semshchikov E (2020) Decomposition-based short-term wind power forecasting for isolated power systems. In: 2020 Australasian Universities Power Engineering Conference AUPEC 2020—Proceedings Aitken W, Negnevitsky M, Semshchikov E (2020) Decomposition-based short-term wind power forecasting for isolated power systems. In: 2020 Australasian Universities Power Engineering Conference AUPEC 2020—Proceedings
51.
Zurück zum Zitat Su Y, Wang S, Xiao Z, Tan M, Wang M (2018) Wind direction and Elman neural networks. In: 2018 2nd IEEE conference in energy internet energy system integration, pp 1–9 Su Y, Wang S, Xiao Z, Tan M, Wang M (2018) Wind direction and Elman neural networks. In: 2018 2nd IEEE conference in energy internet energy system integration, pp 1–9
56.
Zurück zum Zitat Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693CrossRefMATH Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693CrossRefMATH
Metadaten
Titel
Multi-step ahead wind power forecasting based on multi-feature wavelet decomposition and convolution-gated recurrent unit model
verfasst von
Shubham Shringi
Lalit Mohan Saini
Sanjeev Kumar Aggarwal
Publikationsdatum
12.03.2025
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-025-02983-2