Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2019

19.02.2019

Multiaxial creep–fatigue Life Prediction Under Variable Amplitude Loading at High Temperature

verfasst von: Xiao-Wei Wang, De-Guang Shang, Zhen-Kun Guo

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Based on the time–temperature parameter method, a modified von Mises stress is proposed to calculate the multiaxial creep damage at high temperature. By employing the strain-based multiaxial fatigue damage models, the modified von Mises stress is used to predict the creep–fatigue life under variable amplitude multiaxial loading at high temperature. The experimental data of GH4169 superalloy and 304 stainless steel conducted under both constant and variable amplitude loadings at high temperature are used to verify the proposed method, and a good agreement is obtained with the experimental data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L.F. Coffin, Fatigue at High Temperature-Prediction and Interpretation, Inst Mech Eng, 1974, 188, p 109–127CrossRef L.F. Coffin, Fatigue at High Temperature-Prediction and Interpretation, Inst Mech Eng, 1974, 188, p 109–127CrossRef
2.
Zurück zum Zitat W.J. Ostergren, Damage Function and Associated Failure Equations for Predicting Hold Time and Frequency Effects in Elevated-Temperature, Low-Cycle Fatigue, J Testing Eval, 1976, 4(5), p 327–339CrossRef W.J. Ostergren, Damage Function and Associated Failure Equations for Predicting Hold Time and Frequency Effects in Elevated-Temperature, Low-Cycle Fatigue, J Testing Eval, 1976, 4(5), p 327–339CrossRef
3.
Zurück zum Zitat S.S. Manson, The Challenge to Unify Treatment of High Temperature Fatigue–A Partisan Approach Based on Strain Range Partitioning, Fatigue at Elevated Temperatures, American Society for Testing Materials, Storrs, CT, 1972, p 744–782 S.S. Manson, The Challenge to Unify Treatment of High Temperature Fatigue–A Partisan Approach Based on Strain Range Partitioning, Fatigue at Elevated Temperatures, American Society for Testing Materials, Storrs, CT, 1972, p 744–782
4.
Zurück zum Zitat S.S. Manson and G.R. Halford, Treatment of Multiaxial creep–fatigue by Strain Range Partitioning, ASME-MPC Symposium on creep–fatigue Interaction, R.M. Curran, Ed., ASME, New York, 1976, p 299–322 S.S. Manson and G.R. Halford, Treatment of Multiaxial creep–fatigue by Strain Range Partitioning, ASME-MPC Symposium on creep–fatigue Interaction, R.M. Curran, Ed., ASME, New York, 1976, p 299–322
5.
Zurück zum Zitat X.T. Hu and Y.D. Song, Modified Strain Range Partitioning Method, J. Aerosp. Power, 2005, 20(3), p 418–423 X.T. Hu and Y.D. Song, Modified Strain Range Partitioning Method, J. Aerosp. Power, 2005, 20(3), p 418–423
6.
Zurück zum Zitat Q. Zhang, Z.X. Zuo, and J.X. Liu, A Model for Predicting the creep–fatigue Life Under Stepped-Isothermal Fatigue Loading, Int. J. Fatigue, 2013, 55, p 1–6CrossRef Q. Zhang, Z.X. Zuo, and J.X. Liu, A Model for Predicting the creep–fatigue Life Under Stepped-Isothermal Fatigue Loading, Int. J. Fatigue, 2013, 55, p 1–6CrossRef
7.
Zurück zum Zitat J. Kumar, A.K. Singh et al., creep–fatigue Damage Modeling in Ti-6Al-4V Alloy: A Mechanistic Approach, Int. J. Fatigue, 2017, 98, p 62–67CrossRef J. Kumar, A.K. Singh et al., creep–fatigue Damage Modeling in Ti-6Al-4V Alloy: A Mechanistic Approach, Int. J. Fatigue, 2017, 98, p 62–67CrossRef
8.
Zurück zum Zitat G.X. Cheng and A. Plumtree, A Fatigue Damage Accumulation Model Based on Continuum Damage Mechanics and Ductility Exhaustion, Int. J. Fatigue, 1998, 20, p 495–501CrossRef G.X. Cheng and A. Plumtree, A Fatigue Damage Accumulation Model Based on Continuum Damage Mechanics and Ductility Exhaustion, Int. J. Fatigue, 1998, 20, p 495–501CrossRef
9.
Zurück zum Zitat G.D. Zhang, Y.F. Zhao et al., creep–fatigue Interaction Damage Model and Its Application in Modified 9Cr-1Mo Steel, Nucl. Eng. Des., 2011, 241, p 4856–4861CrossRef G.D. Zhang, Y.F. Zhao et al., creep–fatigue Interaction Damage Model and Its Application in Modified 9Cr-1Mo Steel, Nucl. Eng. Des., 2011, 241, p 4856–4861CrossRef
10.
Zurück zum Zitat T.W. Kim, D.H. Kang et al., Continuum Damage Mechanics Based creep–fatigue-Interacted Life Prediction of Nickel-Based Superalloy at High Temperature, Scr. Mater., 2007, 57, p 1149–1152CrossRef T.W. Kim, D.H. Kang et al., Continuum Damage Mechanics Based creep–fatigue-Interacted Life Prediction of Nickel-Based Superalloy at High Temperature, Scr. Mater., 2007, 57, p 1149–1152CrossRef
11.
Zurück zum Zitat Z.C. Fan, X.D. Chen et al., A CDM-Based Study of Fatigue-Creep Interaction Behavior, Int. J. Press. Vessels Pip., 2009, 86, p 628–632CrossRef Z.C. Fan, X.D. Chen et al., A CDM-Based Study of Fatigue-Creep Interaction Behavior, Int. J. Press. Vessels Pip., 2009, 86, p 628–632CrossRef
12.
Zurück zum Zitat J. Lemaitre and A. Plumtree, Application of Damage Concepts to Predict creep–fatigue Failure, J. Eng. Mater. Technol (ASME), 1976, 101, p 284–292CrossRef J. Lemaitre and A. Plumtree, Application of Damage Concepts to Predict creep–fatigue Failure, J. Eng. Mater. Technol (ASME), 1976, 101, p 284–292CrossRef
13.
Zurück zum Zitat W.Z. Wang, Analysis of Multi-axial creep–fatigue Damage on an Outer Cylinder of a 1000 MW Supercritical Steam Turbine, J. Eng. Gas Turbines Power, 2014, 136(11), p 112504–112508CrossRef W.Z. Wang, Analysis of Multi-axial creep–fatigue Damage on an Outer Cylinder of a 1000 MW Supercritical Steam Turbine, J. Eng. Gas Turbines Power, 2014, 136(11), p 112504–112508CrossRef
14.
Zurück zum Zitat E.L. Robinson, Effect of Temperature Variation on the Long-Time Strength of Steels, Trans. ASME, 1952, 74, p 771–781 E.L. Robinson, Effect of Temperature Variation on the Long-Time Strength of Steels, Trans. ASME, 1952, 74, p 771–781
15.
Zurück zum Zitat S. Zhang and M. Sakane, Multiaxial creep–fatigue Life Prediction for Cruciform Specimen, Int. J. Fatigue, 2007, 29, p 2191–2199CrossRef S. Zhang and M. Sakane, Multiaxial creep–fatigue Life Prediction for Cruciform Specimen, Int. J. Fatigue, 2007, 29, p 2191–2199CrossRef
16.
Zurück zum Zitat D.G. Shang, G.Q. Sun et al., creep–fatigue Life Prediction Under Fully-Reversed Multiaxial Loading at High Temperatures, Int. J. Fatigue, 2007, 29, p 705–712CrossRef D.G. Shang, G.Q. Sun et al., creep–fatigue Life Prediction Under Fully-Reversed Multiaxial Loading at High Temperatures, Int. J. Fatigue, 2007, 29, p 705–712CrossRef
17.
Zurück zum Zitat R. Lagneborg and R. Attermo, The Effect of Combined Low-Cycle Fatigue and Creep on the life of Austenitic Stainless Steels, Metall. Trans., 1971, 2, p 1821–1827 R. Lagneborg and R. Attermo, The Effect of Combined Low-Cycle Fatigue and Creep on the life of Austenitic Stainless Steels, Metall. Trans., 1971, 2, p 1821–1827
18.
Zurück zum Zitat H.Y. Lee, S.H. Lee et al., creep–fatigue Damage for a Structural with Dissimilar Metal Welds of Modified 9Cr-1Mo Steel and 316L Stainless Steel, Int. J. Fatigue, 2007, 29, p 1868–1879CrossRef H.Y. Lee, S.H. Lee et al., creep–fatigue Damage for a Structural with Dissimilar Metal Welds of Modified 9Cr-1Mo Steel and 316L Stainless Steel, Int. J. Fatigue, 2007, 29, p 1868–1879CrossRef
19.
Zurück zum Zitat R.Z. Wang, X.C. Zhang, J.G. Gong et al., creep–fatigue Life Prediction and Interaction Diagram in Nickel-Based GH4169 Superalloy at 650°C Based on Cycle-By-Cycle Concept, Int. J. Fatigue, 2017, 97, p 114–123CrossRef R.Z. Wang, X.C. Zhang, J.G. Gong et al., creep–fatigue Life Prediction and Interaction Diagram in Nickel-Based GH4169 Superalloy at 650°C Based on Cycle-By-Cycle Concept, Int. J. Fatigue, 2017, 97, p 114–123CrossRef
20.
Zurück zum Zitat S.G. Tian, Z.R. Li, Z.G. Zhao et al., Influence of Deformation Level on Microstructure and Creep Behavior of GH4169 Alloy, Mater. Sci. Eng. A, 2012, 550, p 235–242CrossRef S.G. Tian, Z.R. Li, Z.G. Zhao et al., Influence of Deformation Level on Microstructure and Creep Behavior of GH4169 Alloy, Mater. Sci. Eng. A, 2012, 550, p 235–242CrossRef
21.
Zurück zum Zitat R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. R. Soc. Lond. A Mat., 1948, 193, p 281–297CrossRef R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. R. Soc. Lond. A Mat., 1948, 193, p 281–297CrossRef
22.
Zurück zum Zitat N. Gao, M.W. Brown, K.J. Miller, and P.A.S. Reed, An Investigation of Crack Growth Behaviour Under creep–fatigue Condition, Mater. Sci. Eng. A, 2005, 410–411, p 67–71CrossRef N. Gao, M.W. Brown, K.J. Miller, and P.A.S. Reed, An Investigation of Crack Growth Behaviour Under creep–fatigue Condition, Mater. Sci. Eng. A, 2005, 410–411, p 67–71CrossRef
23.
Zurück zum Zitat B.A. Kschinka and J.F. Stubbins, creep–fatigue-Environment Interaction in a Bainitic 2.25wt.%Cr-1wt.%Mo Steel Forging, Mater. Sci. Eng. A, 1989, 110, p 89–102CrossRef B.A. Kschinka and J.F. Stubbins, creep–fatigue-Environment Interaction in a Bainitic 2.25wt.%Cr-1wt.%Mo Steel Forging, Mater. Sci. Eng. A, 1989, 110, p 89–102CrossRef
24.
Zurück zum Zitat M.G. Yan, B.C. Liu et al., Editorial board of China aeronautical materials handbook, China aeronautical materials handbook, Vol 2, Standard Press of China, Beijing, 2002 ((in Chinese)) M.G. Yan, B.C. Liu et al., Editorial board of China aeronautical materials handbook, China aeronautical materials handbook, Vol 2, Standard Press of China, Beijing, 2002 ((in Chinese))
25.
Zurück zum Zitat D.G. Shang and D.J. Wang, A New Multiaxial Fatigue Damage Model Based on the Critical Plane Approach, Int. J. Fatigue, 1998, 20(3), p 241–245CrossRef D.G. Shang and D.J. Wang, A New Multiaxial Fatigue Damage Model Based on the Critical Plane Approach, Int. J. Fatigue, 1998, 20(3), p 241–245CrossRef
26.
Zurück zum Zitat D.G. Shang, G.Q. Sun, J. Deng, and C.L. Yan, Multiaxial Fatigue Damage Parameter and Life Prediction for Medium-Carbon Steel Based on the Critical Plane Approach, Int. J. Fatigue, 2007, 29(12), p 2200–2207CrossRef D.G. Shang, G.Q. Sun, J. Deng, and C.L. Yan, Multiaxial Fatigue Damage Parameter and Life Prediction for Medium-Carbon Steel Based on the Critical Plane Approach, Int. J. Fatigue, 2007, 29(12), p 2200–2207CrossRef
27.
Zurück zum Zitat Y.U. Wang and L. Susmel, The Modified Manson–Coffin Curve Method to Estimate Fatigue Lifetime Under Complex Constant and Variable Amplitude Multiaxial Fatigue Loading, Int. J. Fatigue, 2016, 83, p 135–149CrossRef Y.U. Wang and L. Susmel, The Modified Manson–Coffin Curve Method to Estimate Fatigue Lifetime Under Complex Constant and Variable Amplitude Multiaxial Fatigue Loading, Int. J. Fatigue, 2016, 83, p 135–149CrossRef
28.
Zurück zum Zitat A. Fatemi and D.F. Socie, A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-Of-Phase Loading, Fatigue Fract. Eng. Mater. Struct., 1988, 11, p 149–165CrossRef A. Fatemi and D.F. Socie, A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-Of-Phase Loading, Fatigue Fract. Eng. Mater. Struct., 1988, 11, p 149–165CrossRef
29.
Zurück zum Zitat A. Carpinteri, C. Ronchei et al., Lifetime Estimation in the Low/Medium-Cycle Regime Using the Carpinteri-Spagnoli Multiaxial Fatigue Criterion, Theor. Appl. Fract. Mech., 2014, 73, p 120–127CrossRef A. Carpinteri, C. Ronchei et al., Lifetime Estimation in the Low/Medium-Cycle Regime Using the Carpinteri-Spagnoli Multiaxial Fatigue Criterion, Theor. Appl. Fract. Mech., 2014, 73, p 120–127CrossRef
30.
Zurück zum Zitat Y. Jiang, A Fatigue Criterion for General Multiaxial Loading, Fatigue Fract. Eng. Mater. Struct., 2000, 23, p 19–32CrossRef Y. Jiang, A Fatigue Criterion for General Multiaxial Loading, Fatigue Fract. Eng. Mater. Struct., 2000, 23, p 19–32CrossRef
31.
Zurück zum Zitat Y. Jiang, O. Hertel, and M. Vormwald, An experimental Evaluation of three Critical Plane Multiaxial Fatigue Criteria, Int. J. Fatigue, 2007, 29, p 1490–1502CrossRef Y. Jiang, O. Hertel, and M. Vormwald, An experimental Evaluation of three Critical Plane Multiaxial Fatigue Criteria, Int. J. Fatigue, 2007, 29, p 1490–1502CrossRef
32.
Zurück zum Zitat S. Kalnaus and Y. Jiang, Fatigue of AL6XN Stainless Steel, J. Eng. Mater. Technol., 2008, 130, p 1–12CrossRef S. Kalnaus and Y. Jiang, Fatigue of AL6XN Stainless Steel, J. Eng. Mater. Technol., 2008, 130, p 1–12CrossRef
33.
Zurück zum Zitat G.R. Ahmadzadeh and A. Varvani-Farahani, Fatigue Life Assessment of Steel Samples Under Various Irregular Multiaxial Loading Spectra by Means of Two Energy-Based Critical Plane Damage Models, Int. J. Fatigue, 2016, 84, p 113–121CrossRef G.R. Ahmadzadeh and A. Varvani-Farahani, Fatigue Life Assessment of Steel Samples Under Various Irregular Multiaxial Loading Spectra by Means of Two Energy-Based Critical Plane Damage Models, Int. J. Fatigue, 2016, 84, p 113–121CrossRef
34.
Zurück zum Zitat K. Walat, M. Kurek, P. Ogonowski et al., The Multiaxial Random Fatigue Criteria Based on Strain and Energy Damage Parameters on the Critical Plane for the Low-Cycle Range, Int. J. Fatigue, 2012, 37, p 100–111CrossRef K. Walat, M. Kurek, P. Ogonowski et al., The Multiaxial Random Fatigue Criteria Based on Strain and Energy Damage Parameters on the Critical Plane for the Low-Cycle Range, Int. J. Fatigue, 2012, 37, p 100–111CrossRef
35.
Zurück zum Zitat D.F. Socie and G.B. Marquis, Multiaxial fatigue, Society of Automotive Engineers Inc., Warrendale, 2000 D.F. Socie and G.B. Marquis, Multiaxial fatigue, Society of Automotive Engineers Inc., Warrendale, 2000
36.
Zurück zum Zitat C.H. Wang and M.W. Brown, Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue-Part 1: Theories, J. Eng. Mater. Technol., 1996, 118, p 367–374CrossRef C.H. Wang and M.W. Brown, Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue-Part 1: Theories, J. Eng. Mater. Technol., 1996, 118, p 367–374CrossRef
37.
Zurück zum Zitat D.G. Shang, G.Q. Sun, J.H. Chen, N. Cai, and C.L. Yan, Multiaxial Fatigue Behavior of Ni-Based Superalloy GH4169 at 650°C, Mater. Sci. Eng. A., 2006, 432, p 231–238CrossRef D.G. Shang, G.Q. Sun, J.H. Chen, N. Cai, and C.L. Yan, Multiaxial Fatigue Behavior of Ni-Based Superalloy GH4169 at 650°C, Mater. Sci. Eng. A., 2006, 432, p 231–238CrossRef
38.
Zurück zum Zitat S.D. Zhang, M. Harada, K. Ozaki, and M. Sakane, Multiaxial creep–fatigue Life Using Cruciform Specimen, Int. J. Fatigue, 2007, 29, p 852–859CrossRef S.D. Zhang, M. Harada, K. Ozaki, and M. Sakane, Multiaxial creep–fatigue Life Using Cruciform Specimen, Int. J. Fatigue, 2007, 29, p 852–859CrossRef
39.
Zurück zum Zitat S.D. Zhang and M. Sakane, Multiaxial creep–fatigue Life Prediction for Cruciform Specimen, Int. J. Fatigue, 2007, 29, p 2191–2199CrossRef S.D. Zhang and M. Sakane, Multiaxial creep–fatigue Life Prediction for Cruciform Specimen, Int. J. Fatigue, 2007, 29, p 2191–2199CrossRef
Metadaten
Titel
Multiaxial creep–fatigue Life Prediction Under Variable Amplitude Loading at High Temperature
verfasst von
Xiao-Wei Wang
De-Guang Shang
Zhen-Kun Guo
Publikationsdatum
19.02.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-03919-1

Weitere Artikel der Ausgabe 3/2019

Journal of Materials Engineering and Performance 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.