Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

12.03.2019

Multidimensional scaling method for prediction of lysine glycation sites

Zeitschrift:
Computing
Autoren:
Taoying Li, Qian Yin, Runyu Song, Mingyue Gao, Yan Chen
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00607-019-00710-x) contains supplementary material, which is available to authorized users.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Similar to the regular enzymatic glycosylation, lysine glycation also attaches a sugar molecule to a peptide, but it does not need the help of an enzyme. It has been found that lysine glycation is involved in various biological processes and is closely associated with many metabolic diseases. Thus, an accurate identification of lysine glycation sites is important to understand its underlying molecular mechanisms. The glycated residues do not show significant patterns, which make both in silico sequence-level predictions and experimental validations a major challenge. In this study, a novel predictor named MDS_GlySitePred is proposed to predict lysine glycation sites by using multidimensional scaling method (MDS) and support vector machine algorithm. As illustrated by the average results of tenfold cross-validation repeated 50 times, MDS_GlySitePred achieves a satisfactory performance with a sensitivity of 95.08%, a specificity of 97.65%, an accuracy of 96.58%, and Matthew’s correlation coefficient of 0.93 on the extensively used benchmark datasets. Experimental results indicate that MDS_GlySitePred significantly outperforms four existing glycation site predictors including NetGlycate, PreGly, Gly-PseAAC, and BPB_GlySite. Therefore, MDS_GlySitePred can be a useful bioinformatics tool for the identification of glycation sites.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Supplementary material 1 (DOCX 25 kb)
607_2019_710_MOESM1_ESM.docx
Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise