Skip to main content

2024 | OriginalPaper | Buchkapitel

Multimodal LLMs for Health Grounded in Individual-Specific Data

verfasst von : Anastasiya Belyaeva, Justin Cosentino, Farhad Hormozdiari, Krish Eswaran, Shravya Shetty, Greg Corrado, Andrew Carroll, Cory Y. McLean, Nicholas A. Furlotte

Erschienen in: Machine Learning for Multimodal Healthcare Data

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Foundation large language models (LLMs) have shown an impressive ability to solve tasks across a wide range of fields including health. To effectively solve personalized health tasks, LLMs need the ability to ingest a diversity of data modalities that are relevant to an individual’s health status. In this paper, we take a step towards creating multimodal LLMs for health that are grounded in individual-specific data by developing a framework (HeLM: Health Large Language Model for Multimodal Understanding) that enables LLMs to use high-dimensional clinical modalities to estimate underlying disease risk. HeLM encodes complex data modalities by learning an encoder that maps them into the LLM’s token embedding space and for simple modalities like tabular data by serializing the data into text. Using data from the UK Biobank, we show that HeLM can effectively use demographic and clinical features in addition to high-dimensional time-series data to estimate disease risk. For example, HeLM achieves an AUROC of 0.75 for asthma prediction when combining tabular and spirogram data modalities compared with 0.49 when only using tabular data. Overall, we find that HeLM outperforms or performs at parity with classical machine learning approaches across a selection of eight binary traits. Furthermore, we investigate the downstream uses of this model such as its generalizability to out-of-distribution traits and its ability to power conversations around individual health and wellness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Acosta, J.N., Falcone, G.J., Rajpurkar, P., Topol, E.J.: Multimodal biomedical AI. Nat. Med. 28(9), 1773–1784 (2022)CrossRef Acosta, J.N., Falcone, G.J., Rajpurkar, P., Topol, E.J.: Multimodal biomedical AI. Nat. Med. 28(9), 1773–1784 (2022)CrossRef
2.
Zurück zum Zitat Alayrac, J.B., et al.: Flamingo: a visual language model for few-shot learning. In: Advances in Neural Information Processing Systems, vol. 35, pp. 23716–23736 (2022) Alayrac, J.B., et al.: Flamingo: a visual language model for few-shot learning. In: Advances in Neural Information Processing Systems, vol. 35, pp. 23716–23736 (2022)
3.
Zurück zum Zitat Alipanahi, B., et al.: Large-scale machine-learning-based phenotyping significantly improves genomic discovery for optic nerve head morphology. Am. J. Hum. Genet. 108(7), 1217–1230 (2021)CrossRef Alipanahi, B., et al.: Large-scale machine-learning-based phenotyping significantly improves genomic discovery for optic nerve head morphology. Am. J. Hum. Genet. 108(7), 1217–1230 (2021)CrossRef
4.
Zurück zum Zitat Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901 (2020) Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901 (2020)
5.
Zurück zum Zitat Bycroft, C., et al.: The UK Biobank resource with deep phenotyping and genomic data. Nature 562(7726), 203–209 (2018)CrossRef Bycroft, C., et al.: The UK Biobank resource with deep phenotyping and genomic data. Nature 562(7726), 203–209 (2018)CrossRef
8.
Zurück zum Zitat Cosentino, J., et al.: Inference of chronic obstructive pulmonary disease with deep learning on raw spirograms identifies new genetic loci and improves risk models. Nat. Genet. 55, 787–795 (2023)CrossRef Cosentino, J., et al.: Inference of chronic obstructive pulmonary disease with deep learning on raw spirograms identifies new genetic loci and improves risk models. Nat. Genet. 55, 787–795 (2023)CrossRef
9.
Zurück zum Zitat Diaz-Papkovich, A., Anderson-Trocmé, L., Ben-Eghan, C., Gravel, S.: UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts. PLoS Genet. 15(11), e1008432 (2019)CrossRef Diaz-Papkovich, A., Anderson-Trocmé, L., Ben-Eghan, C., Gravel, S.: UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts. PLoS Genet. 15(11), e1008432 (2019)CrossRef
10.
Zurück zum Zitat Dinh, T., et al.: LIFT: language-interfaced fine-tuning for non-language machine learning tasks. In: Advances in Neural Information Processing Systems, vol. 35, pp. 11763–11784 (2022) Dinh, T., et al.: LIFT: language-interfaced fine-tuning for non-language machine learning tasks. In: Advances in Neural Information Processing Systems, vol. 35, pp. 11763–11784 (2022)
14.
Zurück zum Zitat He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
15.
Zurück zum Zitat He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classification with convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 558–567 (2019) He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classification with convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 558–567 (2019)
16.
Zurück zum Zitat Hegselmann, S., Buendia, A., Lang, H., Agrawal, M., Jiang, X., Sontag, D.: TabLLM: few-shot classification of tabular data with large language models. In: International Conference on Artificial Intelligence and Statistics, pp. 5549–5581. PMLR (2023) Hegselmann, S., Buendia, A., Lang, H., Agrawal, M., Jiang, X., Sontag, D.: TabLLM: few-shot classification of tabular data with large language models. In: International Conference on Artificial Intelligence and Statistics, pp. 5549–5581. PMLR (2023)
17.
Zurück zum Zitat Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: International Conference on Machine Learning, pp. 4904–4916. PMLR (2021) Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: International Conference on Machine Learning, pp. 4904–4916. PMLR (2021)
18.
Zurück zum Zitat Kirk, H.R., Vidgen, B., Röttger, P., Hale, S.A.: Personalisation within bounds: a risk taxonomy and policy framework for the alignment of large language models with personalised feedback. arXiv preprint arXiv:2303.05453 (2023) Kirk, H.R., Vidgen, B., Röttger, P., Hale, S.A.: Personalisation within bounds: a risk taxonomy and policy framework for the alignment of large language models with personalised feedback. arXiv preprint arXiv:​2303.​05453 (2023)
19.
Zurück zum Zitat Kline, A., et al.: Multimodal machine learning in precision health: a scoping review. npj Digit. Med. 5(1), 171 (2022)CrossRef Kline, A., et al.: Multimodal machine learning in precision health: a scoping review. npj Digit. Med. 5(1), 171 (2022)CrossRef
21.
Zurück zum Zitat Li, J., Li, D., Savarese, S., Hoi, S.: BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597 (2023) Li, J., Li, D., Savarese, S., Hoi, S.: BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models. arXiv preprint arXiv:​2301.​12597 (2023)
22.
Zurück zum Zitat Lu, J., Clark, C., Zellers, R., Mottaghi, R., Kembhavi, A.: Unified-IO: a unified model for vision, language, and multi-modal tasks. arXiv preprint arXiv:2206.08916 (2022) Lu, J., Clark, C., Zellers, R., Mottaghi, R., Kembhavi, A.: Unified-IO: a unified model for vision, language, and multi-modal tasks. arXiv preprint arXiv:​2206.​08916 (2022)
23.
Zurück zum Zitat Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616(7956), 259–265 (2023)CrossRef Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616(7956), 259–265 (2023)CrossRef
25.
Zurück zum Zitat Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021) Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
26.
Zurück zum Zitat Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do CIFAR-10 classifiers generalize to CIFAR-10? arXiv preprint arXiv:1806.00451 (2018) Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do CIFAR-10 classifiers generalize to CIFAR-10? arXiv preprint arXiv:​1806.​00451 (2018)
27.
Zurück zum Zitat Sakornsakolpat, P., et al.: Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat. Genet. 51(3), 494–505 (2019)CrossRef Sakornsakolpat, P., et al.: Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat. Genet. 51(3), 494–505 (2019)CrossRef
28.
Zurück zum Zitat Salemi, A., Mysore, S., Bendersky, M., Zamani, H.: LaMP: when large language models meet personalization. arXiv preprint arXiv:2304.11406 (2023) Salemi, A., Mysore, S., Bendersky, M., Zamani, H.: LaMP: when large language models meet personalization. arXiv preprint arXiv:​2304.​11406 (2023)
29.
Zurück zum Zitat Shrine, N., et al.: New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. 51(3), 481–493 (2019)CrossRef Shrine, N., et al.: New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. 51(3), 481–493 (2019)CrossRef
31.
Zurück zum Zitat Singhal, K., et al.: Towards expert-level medical question answering with large language models. arXiv preprint arXiv:2212.13138 (2022) Singhal, K., et al.: Towards expert-level medical question answering with large language models. arXiv preprint arXiv:​2212.​13138 (2022)
32.
Zurück zum Zitat Steinberg, E., Jung, K., Fries, J.A., Corbin, C.K., Pfohl, S.R., Shah, N.H.: Language models are an effective representation learning technique for electronic health record data. J. Biomed. Inform. 113, 103637 (2021)CrossRef Steinberg, E., Jung, K., Fries, J.A., Corbin, C.K., Pfohl, S.R., Shah, N.H.: Language models are an effective representation learning technique for electronic health record data. J. Biomed. Inform. 113, 103637 (2021)CrossRef
33.
Zurück zum Zitat Vestbo, J., et al.: Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 187(4), 347–365 (2013)CrossRef Vestbo, J., et al.: Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 187(4), 347–365 (2013)CrossRef
34.
Zurück zum Zitat Vokinger, K.N., Feuerriegel, S., Kesselheim, A.S.: Mitigating bias in machine learning for medicine. Commun. Med. 1(1), 25 (2021)CrossRef Vokinger, K.N., Feuerriegel, S., Kesselheim, A.S.: Mitigating bias in machine learning for medicine. Commun. Med. 1(1), 25 (2021)CrossRef
35.
Zurück zum Zitat Wang, Y., et al.: Preserving in-context learning ability in large language model fine-tuning. arXiv preprint arXiv:2211.00635 (2022) Wang, Y., et al.: Preserving in-context learning ability in large language model fine-tuning. arXiv preprint arXiv:​2211.​00635 (2022)
37.
Zurück zum Zitat Yang, K.D., et al.: Multi-domain translation between single-cell imaging and sequencing data using autoencoders. Nat. Commun. 12(1), 31 (2021)CrossRef Yang, K.D., et al.: Multi-domain translation between single-cell imaging and sequencing data using autoencoders. Nat. Commun. 12(1), 31 (2021)CrossRef
38.
39.
Zurück zum Zitat Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini, M., Wu, Y.: CoCa: contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917 (2022) Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini, M., Wu, Y.: CoCa: contrastive captioners are image-text foundation models. arXiv preprint arXiv:​2205.​01917 (2022)
40.
Zurück zum Zitat Zhou, H.Y., Chen, X., Zhang, Y., Luo, R., Wang, L., Yu, Y.: Generalized radiograph representation learning via cross-supervision between images and free-text radiology reports. Nat. Mach. Intell. 4(1), 32–40 (2022)CrossRef Zhou, H.Y., Chen, X., Zhang, Y., Luo, R., Wang, L., Yu, Y.: Generalized radiograph representation learning via cross-supervision between images and free-text radiology reports. Nat. Mach. Intell. 4(1), 32–40 (2022)CrossRef
Metadaten
Titel
Multimodal LLMs for Health Grounded in Individual-Specific Data
verfasst von
Anastasiya Belyaeva
Justin Cosentino
Farhad Hormozdiari
Krish Eswaran
Shravya Shetty
Greg Corrado
Andrew Carroll
Cory Y. McLean
Nicholas A. Furlotte
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47679-2_7

Premium Partner