Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2021 | OriginalPaper | Buchkapitel

Multimodal Music Mood Classification Framework for Kokborok Music

verfasst von: Sanchali Das, Sambit Satpathy, Swapan Debbarma

Erschienen in: Progress in Advanced Computing and Intelligent Engineering

Verlag: Springer Singapore

share
TEILEN

Abstract

This article describes one of the applications of Music information retrieval (MIR) integrated with natural language processing. The proposed work represents one of the applications of MIR that is music mood classification of one of the North-eastern regional language, which is Kokborok. It is widely spoken in the states of North East (NE) India and many other countries like Nepal, Bhutan, Myanmar and Bangladesh. The selection of the song is particular to Kokborok songs collected from the Bible, which has written in the recognized Romanized language which is accepted worldwide. We develop the multimodal corpus for audio and lyrics for Kokborok song and performed coarse-grained annotation to create mood annotated dataset and then perform classification task on both audio and lyrics separately. We projected mood taxonomy for Kokborok songs and set a mood annotated corpus with the corresponding taxonomy. Initially, we used 48 parameters for audio classification and six Text stylistic feature for lyrics based classification. The SVM classifier is used with linear kernel function for classification. Finally, Mood classification system was developed for Kokborok song consist of three different systems based on audio, lyrics and multimodal (audio and lyrics together). We also compared different classifier used to get the system performance for the above three systems. We achieved 95% accuracy for audio, 97% for lyrics and multimodal system, and the accuracy rate is about 96%.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Literatur
1.
Zurück zum Zitat Tian, Y., Wu, Q., Yue, P.: A comparison study of classification algorithms on the dataset using WEKA tool. J. Eng. Technol. 6(2), 329–341 (2018) Tian, Y., Wu, Q., Yue, P.: A comparison study of classification algorithms on the dataset using WEKA tool. J. Eng. Technol. 6(2), 329–341 (2018)
2.
Zurück zum Zitat Patra, B.G., Das, D., Bandyopadhyay, S.: Automatic music mood classification of Hindi songs. In: Proceedings of 3rd Workshop on Sentiment Analysis where AI meets Psychology, IJCNLP, pp. 24–28. (2013a) Patra, B.G., Das, D., Bandyopadhyay, S.: Automatic music mood classification of Hindi songs. In: Proceedings of 3rd Workshop on Sentiment Analysis where AI meets Psychology, IJCNLP, pp. 24–28. (2013a)
3.
Zurück zum Zitat Patra, B.G., Das, D., Bandyopadhyay, S.: Multimodal mood classification framework for Hindi songs. Computacin y Sistemas, 20(3), 515–526 (2016) Patra, B.G., Das, D., Bandyopadhyay, S.: Multimodal mood classification framework for Hindi songs. Computacin y Sistemas, 20(3), 515–526 (2016)
4.
Zurück zum Zitat Patra, B.G., Das, D., Bandyopadhyay, S.: Unsupervised approach to Hindi music mood classification. Mining intelligence and knowledge exploration, pp. 62–69. Springer International Publishing (2013b) Patra, B.G., Das, D., Bandyopadhyay, S.: Unsupervised approach to Hindi music mood classification. Mining intelligence and knowledge exploration, pp. 62–69. Springer International Publishing (2013b)
5.
Zurück zum Zitat Patra, B.G., Das, D., Bandyopadhyay, S.: Multimodal mood Classification-a case study of differences in Hindi and western songs. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 1980–1989. (2016) Patra, B.G., Das, D., Bandyopadhyay, S.: Multimodal mood Classification-a case study of differences in Hindi and western songs. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 1980–1989. (2016)
6.
Zurück zum Zitat Patra, B.G., Das, D., Bandyopadhyay, S.: Labeling data and developing a supervised framework for Hindi music mood analysis. J. Intell. Inf. Syst. 48(3), 633–651 (2017) Patra, B.G., Das, D., Bandyopadhyay, S.: Labeling data and developing a supervised framework for Hindi music mood analysis. J. Intell. Inf. Syst. 48(3), 633–651 (2017)
7.
Zurück zum Zitat Banerjee, S.: A survey of prospects and problems in hindustani classical raga identification using machine learning techniques. In: Proceedings of the First International Conference on Intelligent Computing and Communication, Springer, Singapore, pp. 467–475. (2017) Banerjee, S.: A survey of prospects and problems in hindustani classical raga identification using machine learning techniques. In: Proceedings of the First International Conference on Intelligent Computing and Communication, Springer, Singapore, pp. 467–475. (2017)
8.
Zurück zum Zitat Velankar, M.R., Sahasrabuddhe, H.V.: A pilot study of Hindustani music sentiments. In: Proceedings of 2nd Workshop on Sentiment Analysis where AI meets Psychology India, IIT Bombay, Mumbai, COLING-2012, pp. 91–98. (2012) Velankar, M.R., Sahasrabuddhe, H.V.: A pilot study of Hindustani music sentiments. In: Proceedings of 2nd Workshop on Sentiment Analysis where AI meets Psychology India, IIT Bombay, Mumbai, COLING-2012, pp. 91–98. (2012)
9.
Zurück zum Zitat Yang, D., Lee, W.S.: Music emotion identification from lyrics. In: Multimedia, ISM’09. 11th IEEE International Symposium, IEEE (2009, December), pp. 624–629. (2009) Yang, D., Lee, W.S.: Music emotion identification from lyrics. In: Multimedia, ISM’09. 11th IEEE International Symposium, IEEE (2009, December), pp. 624–629. (2009)
10.
Zurück zum Zitat Malheiro, R., Panda, R., Gomes, P., Paiva, R.P.: Emotionally-relevant features for classification and regression of music lyrics. IEEE Trans. Affect. Comput. 2, 240–254 (2018) Malheiro, R., Panda, R., Gomes, P., Paiva, R.P.: Emotionally-relevant features for classification and regression of music lyrics. IEEE Trans. Affect. Comput. 2, 240–254 (2018)
11.
Zurück zum Zitat Degaonkar, V.N., Kulkarni, A.V.: Automatic raga identification in Indian classical music using the convolution neural network. J. Eng. Technol. 6(2), 564–576 (2018) Degaonkar, V.N., Kulkarni, A.V.: Automatic raga identification in Indian classical music using the convolution neural network. J. Eng. Technol. 6(2), 564–576 (2018)
12.
Zurück zum Zitat Das, S., Satpathy, S., Debbarma, S.: Challenges and requirements of christian kokborok music irrespective with mood classification systems and generation of mood taxonomy. sentiment word dictionary for Kokborok. Int. J. Comput. Intell. IoT 2(1), (2019) Das, S., Satpathy, S., Debbarma, S.: Challenges and requirements of christian kokborok music irrespective with mood classification systems and generation of mood taxonomy. sentiment word dictionary for Kokborok. Int. J. Comput. Intell. IoT 2(1), (2019)
14.
Zurück zum Zitat Das, S., Satpathy, S., Debbarma, S., Bhattacharyya, B.K.: Data analysis on music classification system and creating a sentiment word dictionary for Kokborok language. J. Ambient Intell. Human. Comput. 1–12 (2019) Das, S., Satpathy, S., Debbarma, S., Bhattacharyya, B.K.: Data analysis on music classification system and creating a sentiment word dictionary for Kokborok language. J. Ambient Intell. Human. Comput. 1–12 (2019)
19.
Zurück zum Zitat Downie, X.H., J. S., Laurier, C., Ehmann, M.B.A.F.: The 2007 MIREX audio mood classification task: lessons learned. In: Proceedings 9th International Conference Music Information Retrieval, pp. 462–467. (2008) Downie, X.H., J. S., Laurier, C., Ehmann, M.B.A.F.: The 2007 MIREX audio mood classification task: lessons learned. In: Proceedings 9th International Conference Music Information Retrieval, pp. 462–467. (2008)
20.
Zurück zum Zitat Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980) Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980)
21.
Zurück zum Zitat Patra, B.G., Das, D., Bandyopadhyay, S.: Mood classification of Hindi songs based on lyrics. In: Proceedings of the 12th International Conference on Natural Language Processing, pp. 261–267. (2015) Patra, B.G., Das, D., Bandyopadhyay, S.: Mood classification of Hindi songs based on lyrics. In: Proceedings of the 12th International Conference on Natural Language Processing, pp. 261–267. (2015)
22.
Zurück zum Zitat Patra, B.G., Das, D., Bandyopadhyay, S.: Retrieving similar lyrics for music recommendation system. In: 14th International Conference on Natural Language Processing, December, pp. 48–52. (2017) Patra, B.G., Das, D., Bandyopadhyay, S.: Retrieving similar lyrics for music recommendation system. In: 14th International Conference on Natural Language Processing, December, pp. 48–52. (2017)
23.
Zurück zum Zitat Laurier, C., Sordo, M., Serra, J., Herrera, P.: Music mood representations from social tags. In: Proceedings of the ISMIR, pp. 381–386. (2009) Laurier, C., Sordo, M., Serra, J., Herrera, P.: Music mood representations from social tags. In: Proceedings of the ISMIR, pp. 381–386. (2009)
24.
Zurück zum Zitat Patra, B.G., Das, D., Maitra, P., Bandyopadhyay, S.: Feed- forward neural network based music emotion recognition. MediaEval Workshop, September 14–15 (2015) Patra, B.G., Das, D., Maitra, P., Bandyopadhyay, S.: Feed- forward neural network based music emotion recognition. MediaEval Workshop, September 14–15 (2015)
25.
Zurück zum Zitat Cano, E., Morisio, M.: Moody lyrics: A sentiment annotated lyrics dataset. In: Proceedings of the 2017 International Conference on Intelligent Systems, Metaheuristics and Swarm Intelligence, ISMSI, Hong Kong, March 2017, pp. 118–124. ACM (2017) Cano, E., Morisio, M.: Moody lyrics: A sentiment annotated lyrics dataset. In: Proceedings of the 2017 International Conference on Intelligent Systems, Metaheuristics and Swarm Intelligence, ISMSI, Hong Kong, March 2017, pp. 118–124. ACM (2017)
26.
Zurück zum Zitat Joshi, A., Balamurali, R., Bhattacharyya, P.: A fall-back strategy for sentiment analysis in Hindi: a case study. In: Proceedings of the 8th International Conference on Natural Language Processing, (ICON-2010) Joshi, A., Balamurali, R., Bhattacharyya, P.: A fall-back strategy for sentiment analysis in Hindi: a case study. In: Proceedings of the 8th International Conference on Natural Language Processing, (ICON-2010)
27.
Zurück zum Zitat McKay, C., Fujinaga, I., Depalle, P.: jAudio: a feature extraction library. In: Proceedings International Society for Music Information Retrieval (ISMIR), pp. 600–603. (2005) McKay, C., Fujinaga, I., Depalle, P.: jAudio: a feature extraction library. In: Proceedings International Society for Music Information Retrieval (ISMIR), pp. 600–603. (2005)
28.
Zurück zum Zitat Ujlambkar, A.M., Attar, V.Z.: Mood classification of Indian popular music. In: Proceedings of the CUBE International Information Technology Conference, pp. 278–283. ACM (2012) Ujlambkar, A.M., Attar, V.Z.: Mood classification of Indian popular music. In: Proceedings of the CUBE International Information Technology Conference, pp. 278–283. ACM (2012)
Metadaten
Titel
Multimodal Music Mood Classification Framework for Kokborok Music
verfasst von
Sanchali Das
Sambit Satpathy
Swapan Debbarma
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-4299-6_14