Skip to main content

2019 | OriginalPaper | Buchkapitel

Multimodal Video Annotation for Retrieval and Discovery of Newsworthy Video in a News Verification Scenario

verfasst von : Lyndon Nixon, Evlampios Apostolidis, Foteini Markatopoulou, Ioannis Patras, Vasileios Mezaris

Erschienen in: MultiMedia Modeling

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper describes the combination of advanced technologies for social-media-based story detection, story-based video retrieval and concept-based video (fragment) labeling under a novel approach for multimodal video annotation. This approach involves textual metadata, structural information and visual concepts - and a multimodal analytics dashboard that enables journalists to discover videos of news events, posted to social networks, in order to verify the details of the events shown. It outlines the characteristics of each individual method and describes how these techniques are blended to facilitate the content-based retrieval, discovery and summarization of (parts of) news videos. A set of case-driven experiments conducted with the help of journalists, indicate that the proposed multimodal video annotation mechanism - combined with a professional analytics dashboard which presents the collected and generated metadata about the news stories and their visual summaries - can support journalists in their content discovery and verification work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Apostolidis, E., Mezaris, V.: Fast shot segmentation combining global and local visual descriptors. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6583–6587 (2014) Apostolidis, E., Mezaris, V.: Fast shot segmentation combining global and local visual descriptors. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6583–6587 (2014)
2.
Zurück zum Zitat Cooray, S.H., O’Connor, N.E.: Identifying an efficient and robust sub-shot segmentation method for home movie summarisation. In: 10th International Conference on Intelligent Systems Design and Applications, pp. 1287–1292 (2010) Cooray, S.H., O’Connor, N.E.: Identifying an efficient and robust sub-shot segmentation method for home movie summarisation. In: 10th International Conference on Intelligent Systems Design and Applications, pp. 1287–1292 (2010)
3.
Zurück zum Zitat He, K., Zhang, X., et al.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K., Zhang, X., et al.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
4.
Zurück zum Zitat Markatopoulou, F., Mezaris, V., et al.: Implicit and explicit concept relations in deep neural networks for multi-label video/image annotation. IEEE Trans. Circuits Syst. Video Technol. 1 (2018) Markatopoulou, F., Mezaris, V., et al.: Implicit and explicit concept relations in deep neural networks for multi-label video/image annotation. IEEE Trans. Circuits Syst. Video Technol. 1 (2018)
5.
Zurück zum Zitat Nixon, L.J.B., Zhu, S., et al.: Video retrieval for multimedia verification of breaking news on social networks. In: 1st International Workshop on Multimedia Verification (MuVer 2017) at ACM Multimedia Conference, MuVer 2017, pp. 13–21. ACM (2017) Nixon, L.J.B., Zhu, S., et al.: Video retrieval for multimedia verification of breaking news on social networks. In: 1st International Workshop on Multimedia Verification (MuVer 2017) at ACM Multimedia Conference, MuVer 2017, pp. 13–21. ACM (2017)
6.
Zurück zum Zitat Over, P.D., Fiscus, J.G., et al.: TRECVID 2013-An overview of the goals, tasks, data, evaluation mechanisms and metrics. In: TRECVID 2013. NIST, USA (2013) Over, P.D., Fiscus, J.G., et al.: TRECVID 2013-An overview of the goals, tasks, data, evaluation mechanisms and metrics. In: TRECVID 2013. NIST, USA (2013)
7.
Zurück zum Zitat Pan, C.M., Chuang, Y.Y., et al.: NTU TRECVID-2007 fast rushes summarization system. In: TRECVID Workshop on Video Summarization, pp. 74–78. ACM (2007) Pan, C.M., Chuang, Y.Y., et al.: NTU TRECVID-2007 fast rushes summarization system. In: TRECVID Workshop on Video Summarization, pp. 74–78. ACM (2007)
8.
Zurück zum Zitat Pittaras, N., Markatopoulou, F., Mezaris, V., Patras, I.: Comparison of fine-tuning and extension strategies for deep convolutional neural networks. In: Amsaleg, L., Guðmundsson, G., Gurrin, C., Jónsson, B., Satoh, S. (eds.) MMM 2017. LNCS, vol. 10132, pp. 102–114. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51811-4_9CrossRef Pittaras, N., Markatopoulou, F., Mezaris, V., Patras, I.: Comparison of fine-tuning and extension strategies for deep convolutional neural networks. In: Amsaleg, L., Guðmundsson, G., Gurrin, C., Jónsson, B., Satoh, S. (eds.) MMM 2017. LNCS, vol. 10132, pp. 102–114. Springer, Cham (2017). https://​doi.​org/​10.​1007/​978-3-319-51811-4_​9CrossRef
9.
Zurück zum Zitat Rublee, E., Rabaud, V., et al.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571 (2011) Rublee, E., Rabaud, V., et al.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571 (2011)
10.
Zurück zum Zitat Russakovsky, O., Deng, J., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)MathSciNetCrossRef Russakovsky, O., Deng, J., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)MathSciNetCrossRef
11.
Zurück zum Zitat Seo, K., Park, S.J., et al.: Wipe scene-change detector based on visual rhythm spectrum. IEEE Trans. Consum. Electron. 55(2), 831–838 (2009)CrossRef Seo, K., Park, S.J., et al.: Wipe scene-change detector based on visual rhythm spectrum. IEEE Trans. Consum. Electron. 55(2), 831–838 (2009)CrossRef
12.
Zurück zum Zitat Su, C.W., Tyan, H.R., et al.: A motion-tolerant dissolve detection algorithm. IEEE Int. Conf. Multimedia Expo. 2, 225–228 (2002)CrossRef Su, C.W., Tyan, H.R., et al.: A motion-tolerant dissolve detection algorithm. IEEE Int. Conf. Multimedia Expo. 2, 225–228 (2002)CrossRef
13.
Zurück zum Zitat Szegedy, C., Liu, W., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (2015) Szegedy, C., Liu, W., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)
14.
Zurück zum Zitat Teyssou, D., Leung, J.M., et al.: The InVID plug-in: web video verification on the browser. In: 1st International Workshop on Multimedia Verification (MuVer 2017) at ACM Multimedia Conference, pp. 23–30. ACM (2017) Teyssou, D., Leung, J.M., et al.: The InVID plug-in: web video verification on the browser. In: 1st International Workshop on Multimedia Verification (MuVer 2017) at ACM Multimedia Conference, pp. 23–30. ACM (2017)
Metadaten
Titel
Multimodal Video Annotation for Retrieval and Discovery of Newsworthy Video in a News Verification Scenario
verfasst von
Lyndon Nixon
Evlampios Apostolidis
Foteini Markatopoulou
Ioannis Patras
Vasileios Mezaris
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-05710-7_12