Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

05.11.2019 | Methodologies and Application | Ausgabe 13/2020

Soft Computing 13/2020

Multiobjective evolutionary-based multi-kernel learner for realizing transfer learning in the prediction of HIV-1 protease cleavage sites

Zeitschrift:
Soft Computing > Ausgabe 13/2020
Autoren:
Deepak Singh, Dilip Singh Sisodia, Pradeep Singh
Wichtige Hinweise
Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Due to the unavailability of adequate patients and expensive labeling cost, many real-world biomedical cases have scarcity in the annotated data. This holds very true for HIV-1 protease specificity problem where only a few experimentally verified cleavage sites are present. The challenge then is to exploit the auxiliary data. However, the problem becomes more complicated when the underlying train and test data are generated from different distributions. To deal with the challenges, we formulate the HIV-1 protease cleavage site prediction problem into a bi-objective optimization problem and solving it by introducing a multiobjective evolutionary-based multi-kernel model. A solution for the optimization problem will lead us to decide the optimal number of base kernels with the best pairing of features. The bi-objective criteria encourage different individual kernels in the ensemble to mitigate the effect of distribution difference in training and test data with the ideal number of base kernels. In this paper, we considered eight different feature descriptors and three different kernel variants of support vector machines to generate the optimal multi-kernel learning model. Non-dominated sorting genetic algorithm-II is employed with bi-objective of achieving a maximum area under the receiver operating characteristic curve simultaneously with a minimum number of features. To validate the effectiveness of the model, the experiments were performed on four HIV-1 protease datasets. The performance comparison with fifteen state-of-the-art techniques on average accuracy and area under curve has been evaluated to justify the improvement of the proposed model. We then analyze Friedman and post hoc tests to demonstrate the significant improvement. The result obtained following the extensive experiment enumerates the bi-objective multi-kernel model performance enhancement on within and cross-learning over the other state-of-the-art techniques.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 13/2020

Soft Computing 13/2020 Zur Ausgabe

Premium Partner

    Bildnachweise