Skip to main content

2014 | OriginalPaper | Buchkapitel

11. Multiphase Flow in Microscale Systems

verfasst von : Manabu Iguchi, Olusegun J. Ilegbusi

Erschienen in: Basic Transport Phenomena in Materials Engineering

Verlag: Springer Japan

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The surface and interfacial tension forces play an essential role in micro reactors and channels. Wall wettability is also one of key parameters affecting the flow in these flow systems. Detailed discussion is given on the flows in microscale systems in this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fujii T (2008) Development and applications of micro reactor. In: Yoshida Y (ed) CMC, Tokyo, pp 47–60 Fujii T (2008) Development and applications of micro reactor. In: Yoshida Y (ed) CMC, Tokyo, pp 47–60
2.
Zurück zum Zitat Kusakabe K, Sotowa K (2008) Introduction to micro reactor. Yoneda Pub. Co. Ltd., Tokyo, 43–78 Kusakabe K, Sotowa K (2008) Introduction to micro reactor. Yoneda Pub. Co. Ltd., Tokyo, 43–78
3.
Zurück zum Zitat Togashi S, Miyake R (2005) Micro reactor technology. NTS Co. Ltd., Tokyo, 41–49 Togashi S, Miyake R (2005) Micro reactor technology. NTS Co. Ltd., Tokyo, 41–49
4.
Zurück zum Zitat Kawai T (2003) Dictionary of nanotechnology. Kogyo-chosakai, Tokyo, 527 Kawai T (2003) Dictionary of nanotechnology. Kogyo-chosakai, Tokyo, 527
5.
Zurück zum Zitat Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Ann Rev Fluid Mech 36:381–411CrossRef Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Ann Rev Fluid Mech 36:381–411CrossRef
6.
Zurück zum Zitat Meyvantsson I, Beebe DJ (2008) Cell culture models in microfluidic systems. Ann Rev Anal Chem 1:423–449CrossRef Meyvantsson I, Beebe DJ (2008) Cell culture models in microfluidic systems. Ann Rev Anal Chem 1:423–449CrossRef
7.
Zurück zum Zitat Fukano T, Kariyasaki A, Kagawa M (1990) Flow patterns and pressure drop in isothermal gas–liquid concurrent flow in a horizontal capillary tube. Trans Jpn Soc Mech Eng, Ser B 56(528):174–182 Fukano T, Kariyasaki A, Kagawa M (1990) Flow patterns and pressure drop in isothermal gas–liquid concurrent flow in a horizontal capillary tube. Trans Jpn Soc Mech Eng, Ser B 56(528):174–182
8.
Zurück zum Zitat Barnea D, Luninski Y, Taitel Y (1983) Flow pattern in horizontal and vertical two-phase flow in small diameter pipes. Can J Chem Engngi 61:617–620CrossRef Barnea D, Luninski Y, Taitel Y (1983) Flow pattern in horizontal and vertical two-phase flow in small diameter pipes. Can J Chem Engngi 61:617–620CrossRef
9.
Zurück zum Zitat Chung PMY, Kawaji M (2004) The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels. Int J Multiphase Flow 30:735–761CrossRefMATH Chung PMY, Kawaji M (2004) The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels. Int J Multiphase Flow 30:735–761CrossRefMATH
10.
Zurück zum Zitat Serizawa A, Feng Z, Kawahara Z (2002) Two-phase flow in microchannels. Exp Therm Fluid Sci 26:703–714CrossRef Serizawa A, Feng Z, Kawahara Z (2002) Two-phase flow in microchannels. Exp Therm Fluid Sci 26:703–714CrossRef
11.
Zurück zum Zitat Ide H, Kimura R, Kawaji M (2010) Characteristics of void fraction and velocity of gas–liquid two-phase flow in a microchannel. J Jpn Soc Multiphase Flow 23–5:589–596CrossRef Ide H, Kimura R, Kawaji M (2010) Characteristics of void fraction and velocity of gas–liquid two-phase flow in a microchannel. J Jpn Soc Multiphase Flow 23–5:589–596CrossRef
12.
Zurück zum Zitat Kawahara A, Sadatomi M, Nei K, Matsuo H (2009) Investigation of bubble velocity, void fraction an pressure drop for gas–liquid two-phase flow in a circular microchannel. Progress Multiphase Flow Res 4:37–44CrossRef Kawahara A, Sadatomi M, Nei K, Matsuo H (2009) Investigation of bubble velocity, void fraction an pressure drop for gas–liquid two-phase flow in a circular microchannel. Progress Multiphase Flow Res 4:37–44CrossRef
13.
Zurück zum Zitat Sadatomi M, Ali MI, Kawaji M (1992) Effects of gap width and orientation on two-phase flow in a narrow passage between two-float plates. Trans Jpn Soc Mech Eng Ser B 58(546):112–119CrossRef Sadatomi M, Ali MI, Kawaji M (1992) Effects of gap width and orientation on two-phase flow in a narrow passage between two-float plates. Trans Jpn Soc Mech Eng Ser B 58(546):112–119CrossRef
14.
Zurück zum Zitat Ide H, Fukano T (2003) Correlations of the holdup and frictional pressure drop in air-water two-phase flow in a flat capillary rectangular channel. Trans Jpn Soc Mech Eng Ser B 69(686):67–75 Ide H, Fukano T (2003) Correlations of the holdup and frictional pressure drop in air-water two-phase flow in a flat capillary rectangular channel. Trans Jpn Soc Mech Eng Ser B 69(686):67–75
15.
Zurück zum Zitat Kumagai T, Iguchi M (2007) Wettability effect on flow pattern in horizontal air-water two-phase flow in rectangular small channels. J JSEM 7(1):50–55 Kumagai T, Iguchi M (2007) Wettability effect on flow pattern in horizontal air-water two-phase flow in rectangular small channels. J JSEM 7(1):50–55
16.
Zurück zum Zitat Akbar MK, Plummer DA, Ghiaasiaan SM (2003) Brief communication on gas–liquid two-phase flow regimes in microchannels. Int J Multiphase Flow 29:855–865CrossRefMATH Akbar MK, Plummer DA, Ghiaasiaan SM (2003) Brief communication on gas–liquid two-phase flow regimes in microchannels. Int J Multiphase Flow 29:855–865CrossRefMATH
17.
Zurück zum Zitat Mishima K, Hibiki T (1996) Some characteristics of air–water two-phase flow in small diameter vertical tubes. Int J Multiphase Flow 22:703–712CrossRefMATH Mishima K, Hibiki T (1996) Some characteristics of air–water two-phase flow in small diameter vertical tubes. Int J Multiphase Flow 22:703–712CrossRefMATH
18.
Zurück zum Zitat Watanabe T, Iguchi M (2009) Model experiment on the mold powder entrapment by a large argon bubble rising along the immersion nozzle. ISIJ In 49(2):182–188CrossRef Watanabe T, Iguchi M (2009) Model experiment on the mold powder entrapment by a large argon bubble rising along the immersion nozzle. ISIJ In 49(2):182–188CrossRef
19.
Zurück zum Zitat Terauchi Y, Iguchi M, Kosaka H, Yokoya S, Hara S (1999) Wettability effect on the flow pattern of air-water two-phase flows in a vertical pipe. Tetsu Hagane 85(9):645–651 Terauchi Y, Iguchi M, Kosaka H, Yokoya S, Hara S (1999) Wettability effect on the flow pattern of air-water two-phase flows in a vertical pipe. Tetsu Hagane 85(9):645–651
20.
Zurück zum Zitat Iguchi M, Terauchi Y (2001) Boundaries among bubbly and slug flow regimes in air–water two-phase flows in vertical pipe of poor wettability. Int J Multiphase Flow 27:729–735CrossRefMATH Iguchi M, Terauchi Y (2001) Boundaries among bubbly and slug flow regimes in air–water two-phase flows in vertical pipe of poor wettability. Int J Multiphase Flow 27:729–735CrossRefMATH
21.
Zurück zum Zitat Inoue T, Iguchi M, Mizuno M (2001) Separation of gas and liquid using wettability difference of T-junction. Jpn J Multiphase Flow 15(2):158–164CrossRef Inoue T, Iguchi M, Mizuno M (2001) Separation of gas and liquid using wettability difference of T-junction. Jpn J Multiphase Flow 15(2):158–164CrossRef
22.
Zurück zum Zitat Oke T, Kumagai T, Iguchi M (2010) Flow patterns of gas–liquid two-phase flow through an abrupt expansion in millimeter-scale rectangular channel. J JSEM 10(Special Issue):32–37 Oke T, Kumagai T, Iguchi M (2010) Flow patterns of gas–liquid two-phase flow through an abrupt expansion in millimeter-scale rectangular channel. J JSEM 10(Special Issue):32–37
23.
Zurück zum Zitat Oke T, Kumagai T, Ilegbusi OJ, Iguchi M (2010) Gas-liquid two-phase flow through an orifice in milimeter-scale rectangular channel. Proceding 5th international symposium on advanced science and technology in experimental mechanics, Kyoto, 4–7 November 2010 Oke T, Kumagai T, Ilegbusi OJ, Iguchi M (2010) Gas-liquid two-phase flow through an orifice in milimeter-scale rectangular channel. Proceding 5th international symposium on advanced science and technology in experimental mechanics, Kyoto, 4–7 November 2010
24.
Zurück zum Zitat Livak-Dahl E, Sinn I, Burns M (2011) Microfluidic chemical analysis system. Ann Rev Chem Bio Eng 2:325–353 Livak-Dahl E, Sinn I, Burns M (2011) Microfluidic chemical analysis system. Ann Rev Chem Bio Eng 2:325–353
25.
Zurück zum Zitat Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Ann Rev Biomed Eng 4:261–286CrossRef Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Ann Rev Biomed Eng 4:261–286CrossRef
26.
Zurück zum Zitat McCalla SE, Tripathi A (2011) Microfluidic reactors for diagnostics applications. Ann Rev Biomed Eng 13:312–343 McCalla SE, Tripathi A (2011) Microfluidic reactors for diagnostics applications. Ann Rev Biomed Eng 13:312–343
27.
Zurück zum Zitat Young JB (2007) Thermofluid modeling of fuel cells. Ann Rev Fluid Mech 39:193–215CrossRef Young JB (2007) Thermofluid modeling of fuel cells. Ann Rev Fluid Mech 39:193–215CrossRef
28.
Zurück zum Zitat Brandon NP, Skinner S, Steele BCH (2003) Recent advances in materials for fuel cells. Ann Rev Mater Res 33:183–213CrossRef Brandon NP, Skinner S, Steele BCH (2003) Recent advances in materials for fuel cells. Ann Rev Mater Res 33:183–213CrossRef
29.
Zurück zum Zitat Toner M, Irimia D (2005) Blood-on-a-chip. Ann Rev Biomed Eng 7:77–103CrossRef Toner M, Irimia D (2005) Blood-on-a-chip. Ann Rev Biomed Eng 7:77–103CrossRef
30.
Zurück zum Zitat Ho CM, Tai YC (1998) Micro-electro-mechanical-systems (MEMS) and fluid flows. Ann Rev Fluid Mech 30:579–612CrossRef Ho CM, Tai YC (1998) Micro-electro-mechanical-systems (MEMS) and fluid flows. Ann Rev Fluid Mech 30:579–612CrossRef
31.
Zurück zum Zitat Kasagi N, Suzuki Y, Fukagata K (2009) Microelectromechanical systems-based feedback control of turbulence for skin friction reduction. Ann Rev Fluid Mech 41:231–251CrossRef Kasagi N, Suzuki Y, Fukagata K (2009) Microelectromechanical systems-based feedback control of turbulence for skin friction reduction. Ann Rev Fluid Mech 41:231–251CrossRef
32.
Zurück zum Zitat Gutierrez-Osuna R, Hierlemann A (2010) Adaptive microsensor systems. Ann Rev Anal Chem 3:255–276CrossRef Gutierrez-Osuna R, Hierlemann A (2010) Adaptive microsensor systems. Ann Rev Anal Chem 3:255–276CrossRef
33.
Zurück zum Zitat Ghosal S (2006) Electrokinetic flow and dispersion in capillary electrophoresis. Ann Rev Fluid Mech 38:309–338MathSciNetCrossRef Ghosal S (2006) Electrokinetic flow and dispersion in capillary electrophoresis. Ann Rev Fluid Mech 38:309–338MathSciNetCrossRef
34.
Zurück zum Zitat Barrero A, Loscertales IG (2007) Micro- and nanoparticles via capillary flows. Ann Rev Fluid Mech 39:89–106CrossRef Barrero A, Loscertales IG (2007) Micro- and nanoparticles via capillary flows. Ann Rev Fluid Mech 39:89–106CrossRef
35.
Zurück zum Zitat Rauscher M, Dietrich A (2008) Wetting phenomena in nanofluidics. Ann Rev Mater Res 38:143–172CrossRef Rauscher M, Dietrich A (2008) Wetting phenomena in nanofluidics. Ann Rev Mater Res 38:143–172CrossRef
Metadaten
Titel
Multiphase Flow in Microscale Systems
verfasst von
Manabu Iguchi
Olusegun J. Ilegbusi
Copyright-Jahr
2014
Verlag
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-54020-5_11

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.