Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.12.2010 | Original Article | Ausgabe 1-4/2010

International Journal of Machine Learning and Cybernetics 1-4/2010

Multiple classifier systems for robust classifier design in adversarial environments

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 1-4/2010
Autoren:
Battista Biggio, Giorgio Fumera, Fabio Roli

Abstract

Pattern recognition systems are increasingly being used in adversarial environments like network intrusion detection, spam filtering and biometric authentication and verification systems, in which an adversary may adaptively manipulate data to make a classifier ineffective. Current theory and design methods of pattern recognition systems do not take into account the adversarial nature of such kind of applications. Their extension to adversarial settings is thus mandatory, to safeguard the security and reliability of pattern recognition systems in adversarial environments. In this paper we focus on a strategy recently proposed in the literature to improve the robustness of linear classifiers to adversarial data manipulation, and experimentally investigate whether it can be implemented using two well known techniques for the construction of multiple classifier systems, namely, bagging and the random subspace method. Our results provide some hints on the potential usefulness of classifier ensembles in adversarial classification tasks, which is different from the motivations suggested so far in the literature.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1-4/2010

International Journal of Machine Learning and Cybernetics 1-4/2010 Zur Ausgabe