Skip to main content
Erschienen in: Continuum Mechanics and Thermodynamics 4/2021

05.03.2021 | Original Article

Multiple cracking model in a 3D GraFEA framework

verfasst von: A. R. Srinivasa, H. Y. Shin, P. Thamburaja, J. N. Reddy

Erschienen in: Continuum Mechanics and Thermodynamics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, a thermodynamically consistent three-dimensional (3D) small strain-based theory to describe the deformation and fracture in quasi-brittle and brittle elastic solids is presented. The description of fracture at a material point resembles the microplane fracture approach developed by Bažant et al. (J Eng Mech 126(9):944–953, 2000, J Eng Mech 122(3): 245–254, 1996), but the present theory has the following novel features: (a) a probabilistic description of fracture propagation is used, developing evolution equations for the probability of a microcrack occurring at a given location and (b) a kinematical approach to modeling crack opening and closing. The new 3-D constitutive theory, in which elements were recently proposed by Srinivasa et al. (Mech Adv Mater Struct 80(27–30):2099–2108, 2020), has been computationally implemented within a Graph-based Finite-Element Analysis (GraFEA) framework developed by Reddy and colleagues (Khodabakhshi et al. in Meccanica 51:3129–3147, 2016, Acta Mech 230:3593–3612, 2019), and it has also been implemented into the dynamics-based Abaqus/Explicit (Reference manuals. Simulia-Dassault Systémes, 2020) finite element program through a vectorized user–material subroutine interface. Our computational approach for fracture modeling is intra-element-based, which is central to the GraFEA approach rather than inter-element fracture, as is done in cohesive zone-based numerical methods, together with selective non-locality where the non-locality is only for probability evolution motivated by population dynamic models that allows us to perform efficient implementation of the code without special elements or other numerical artifacts. Several homogeneous deformation cases for fracture in cementitious and brittle elastic materials were modeled, and the response obtained from the constitutive theory and its finite element implementation are qualitatively similar to that obtained in the literature. In particular, we show that our computational procedure is able to model crack closure in solids in a robust, relatively simple and elegant manner instead of relying on a previously developed method of decomposing the stored energy into “positive” and “negative” portions (Amor et al. in J Mech Phys Solids 57(8):1209–1229, 2009, Miehe et al. in Int J Numer Meth Eng 83:1273–1311, 2010).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
While the fact that there can be only K cracks of known normals is limiting from a theoretical point of view, we point out that when the body is discretized, we will have no option but to limit the number of cracks anyway.
 
2
The finite deformation rate-based constitutive theory for nonlinear viscoelastic solids and its finite element implementation [60] have shown that the element failure method can be used to obtain mesh-independent, that is, element size- and element type-independent stress–strain responses and crack propagation characteristics in a viscoelastic solid provided it is supplemented with a non-local fracture/failure criterion.
 
Literatur
1.
Zurück zum Zitat Abaqus/Explicit: Reference manuals. Simulia-Dassault Systémes (2020) Abaqus/Explicit: Reference manuals. Simulia-Dassault Systémes (2020)
2.
Zurück zum Zitat Amor, H., Marigo, J.J., Maurini, C.: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57(8), 1209–1229 (2009)ADSMATHCrossRef Amor, H., Marigo, J.J., Maurini, C.: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57(8), 1209–1229 (2009)ADSMATHCrossRef
3.
Zurück zum Zitat Bargellini, R., Halm, D., Dragon, A.: Modelling of quasi-brittle behaviour: a discrete approach coupling anisotropic damage growth and frictional sliding. Eur. J. Mech. A Solids 27, 564–581 (2008)ADSMathSciNetMATHCrossRef Bargellini, R., Halm, D., Dragon, A.: Modelling of quasi-brittle behaviour: a discrete approach coupling anisotropic damage growth and frictional sliding. Eur. J. Mech. A Solids 27, 564–581 (2008)ADSMathSciNetMATHCrossRef
4.
Zurück zum Zitat Bažant, Z., Caner, F., Adley, M., Akers, S.: Fracturing rate effect and creep in microplane model for dynamics. J. Eng. Mech. 126, 962–970 (2000) Bažant, Z., Caner, F., Adley, M., Akers, S.: Fracturing rate effect and creep in microplane model for dynamics. J. Eng. Mech. 126, 962–970 (2000)
5.
Zurück zum Zitat Bažant, Z., Gettu, R.: Rate effects and load relaxation in static fracture of concrete. ACI Mater. J. 89, 456–468 (1992) Bažant, Z., Gettu, R.: Rate effects and load relaxation in static fracture of concrete. ACI Mater. J. 89, 456–468 (1992)
6.
Zurück zum Zitat Bažant, Z., Luo, W., Chau, V.T., Bessa, M.A.: Wave dispersion and basic concepts of peridynamics compared to classical nonlocal damage models. J. Appl. Mech. 83, 111004 (2016)ADSCrossRef Bažant, Z., Luo, W., Chau, V.T., Bessa, M.A.: Wave dispersion and basic concepts of peridynamics compared to classical nonlocal damage models. J. Appl. Mech. 83, 111004 (2016)ADSCrossRef
7.
Zurück zum Zitat Bažant, Z.P.: Mechanics of distributed cracking. Appl. Mech. Rev. 39(5), 675–705 (1986)ADSCrossRef Bažant, Z.P.: Mechanics of distributed cracking. Appl. Mech. Rev. 39(5), 675–705 (1986)ADSCrossRef
8.
Zurück zum Zitat Bažant, Z.P., Caner, F.C., Carol, I., Adley, M.D., Akers, S.A.: Microplane model M4 for concrete I: formulation with work-conjugate deviatoric stress. J. Eng. Mech. 126(9), 944–953 (2000) Bažant, Z.P., Caner, F.C., Carol, I., Adley, M.D., Akers, S.A.: Microplane model M4 for concrete I: formulation with work-conjugate deviatoric stress. J. Eng. Mech. 126(9), 944–953 (2000)
9.
Zurück zum Zitat Bažant, Z.P., Di Luzio, G.: Nonlocal microplane model with strain-softening yield limits. Int. J. Solids Struct. 41, 7209–7240 (2004)MATHCrossRef Bažant, Z.P., Di Luzio, G.: Nonlocal microplane model with strain-softening yield limits. Int. J. Solids Struct. 41, 7209–7240 (2004)MATHCrossRef
10.
Zurück zum Zitat Bažant, Z.P., Prat, P.C.: Measurement of mode III fracture energy of concrete. Nucl. Eng. Des. 106(1), 1–8 (1988)ADSCrossRef Bažant, Z.P., Prat, P.C.: Measurement of mode III fracture energy of concrete. Nucl. Eng. Des. 106(1), 1–8 (1988)ADSCrossRef
11.
Zurück zum Zitat Bažant, Z.P., Xiang, Y., Prat, P.C.: Microplane model for concrete. I: sress-strain boundaries and finite strain. J. Eng. Mech. 122(3), 245–254 (1996) Bažant, Z.P., Xiang, Y., Prat, P.C.: Microplane model for concrete. I: sress-strain boundaries and finite strain. J. Eng. Mech. 122(3), 245–254 (1996)
12.
Zurück zum Zitat Birch, D.A., Young, W.R.: A master equation for a spatial population model with pair interactions. Theor. Popul. Biol. 70, 26–42 (2006)MATHCrossRef Birch, D.A., Young, W.R.: A master equation for a spatial population model with pair interactions. Theor. Popul. Biol. 70, 26–42 (2006)MATHCrossRef
13.
Zurück zum Zitat de Borst, R., Verhoosel, C.V.: Gradient damage vs phase-field approaches for fracture: similarities and differences. Comput. Methods Appl. Mech. Eng. 312, 78–94 (2016)ADSMathSciNetMATHCrossRef de Borst, R., Verhoosel, C.V.: Gradient damage vs phase-field approaches for fracture: similarities and differences. Comput. Methods Appl. Mech. Eng. 312, 78–94 (2016)ADSMathSciNetMATHCrossRef
14.
Zurück zum Zitat Bowden, F.P., Brunton, J.H., Field, J.E., Heyes, A.D.: Controlled fracture of brittle solids and interruption of electrical current. Nature 216(5110), 38–42 (1967)ADSCrossRef Bowden, F.P., Brunton, J.H., Field, J.E., Heyes, A.D.: Controlled fracture of brittle solids and interruption of electrical current. Nature 216(5110), 38–42 (1967)ADSCrossRef
15.
Zurück zum Zitat Cusatis, G.: Strain-rate effects on concrete behavior. Int. J. Impact Eng 38, 162–170 (2011)CrossRef Cusatis, G.: Strain-rate effects on concrete behavior. Int. J. Impact Eng 38, 162–170 (2011)CrossRef
16.
Zurück zum Zitat Davison, L., Stevens, A.: Thermomechanical constitution of spalling elastic bodies. J. Appl. Phys. 44, 667–674 (1973)ADSCrossRef Davison, L., Stevens, A.: Thermomechanical constitution of spalling elastic bodies. J. Appl. Phys. 44, 667–674 (1973)ADSCrossRef
17.
Zurück zum Zitat De Vree, J., Brekelmans, W., Van Gils, M.: Comparison of nonlocal approaches in continuum damage mechanics. Comput. Struct. 55(4), 581–588 (1995)ADSMATHCrossRef De Vree, J., Brekelmans, W., Van Gils, M.: Comparison of nonlocal approaches in continuum damage mechanics. Comput. Struct. 55(4), 581–588 (1995)ADSMATHCrossRef
18.
Zurück zum Zitat Desmorat, R.: Anisotropic damage modeling of concrete materials. Int. J. Damage Mech 25, 818–852 (2016)CrossRef Desmorat, R.: Anisotropic damage modeling of concrete materials. Int. J. Damage Mech 25, 818–852 (2016)CrossRef
19.
Zurück zum Zitat Dhar, S., Sethuraman, R., Dixit, P.M.: A continuum damage mechanics model for void growth and micro crack initiation. Eng. Fract. Mech. 53(6), 917–928 (1996)CrossRef Dhar, S., Sethuraman, R., Dixit, P.M.: A continuum damage mechanics model for void growth and micro crack initiation. Eng. Fract. Mech. 53(6), 917–928 (1996)CrossRef
20.
Zurück zum Zitat Diana, V., Labuz, J.F., Biolzi, L.: Simulating fracture in rock using a micropolar peridynamic formulation. Eng. Fract. Mech. 230, 106985 (2020)CrossRef Diana, V., Labuz, J.F., Biolzi, L.: Simulating fracture in rock using a micropolar peridynamic formulation. Eng. Fract. Mech. 230, 106985 (2020)CrossRef
21.
Zurück zum Zitat Doi, M.: Stochastic theory of diffusion-controlled reaction. J. Phys. A: Math. Gen. 9(9), 1479 (1976)ADSCrossRef Doi, M.: Stochastic theory of diffusion-controlled reaction. J. Phys. A: Math. Gen. 9(9), 1479 (1976)ADSCrossRef
23.
Zurück zum Zitat Evangelista Junior, F., Fabiano Araújo Moreira, J.: A novel continuum damage model to simulate quasi-brittle failure in mode I and mixed-mode conditions using a continuous or a continuous-discontinuous strategy. Theoret. Appl. Fract. Mech. 109, 102745 (2020)CrossRef Evangelista Junior, F., Fabiano Araújo Moreira, J.: A novel continuum damage model to simulate quasi-brittle failure in mode I and mixed-mode conditions using a continuous or a continuous-discontinuous strategy. Theoret. Appl. Fract. Mech. 109, 102745 (2020)CrossRef
24.
Zurück zum Zitat Galouei, M., Fakhimi, A.: Size effect, material ductility and shape of fracture process zone in quasi-brittle materials. Comput. Geotech. 65, 126–135 (2015)CrossRef Galouei, M., Fakhimi, A.: Size effect, material ductility and shape of fracture process zone in quasi-brittle materials. Comput. Geotech. 65, 126–135 (2015)CrossRef
25.
Zurück zum Zitat Gambarelli, S., Ožbolt, J.: Dynamic fracture of concrete in compression: 3D finite element analysis at meso- and macro-scale. Continuum Mech. Thermodyn. 32(6), 1803–1821 (2020)ADSCrossRef Gambarelli, S., Ožbolt, J.: Dynamic fracture of concrete in compression: 3D finite element analysis at meso- and macro-scale. Continuum Mech. Thermodyn. 32(6), 1803–1821 (2020)ADSCrossRef
26.
Zurück zum Zitat Gao, Z., Zhang, L., Yu, W.: A nonlocal continuum damage model for brittle fracture. Eng. Fract. Mech. 189, 481–500 (2018)CrossRef Gao, Z., Zhang, L., Yu, W.: A nonlocal continuum damage model for brittle fracture. Eng. Fract. Mech. 189, 481–500 (2018)CrossRef
27.
Zurück zum Zitat Gerstle, W., Sau, N., Silling, S.: Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237(12–13), 1250–1258 (2007)CrossRef Gerstle, W., Sau, N., Silling, S.: Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237(12–13), 1250–1258 (2007)CrossRef
28.
Zurück zum Zitat Giovanardi, B., Scotti, A., Formaggia, L.: A hybrid xfem -phase field (xfield) method for crack propagation in brittle elastic materials. Comput. Methods Appl. Mech. Eng. 320, 396–420 (2017)ADSMathSciNetMATHCrossRef Giovanardi, B., Scotti, A., Formaggia, L.: A hybrid xfem -phase field (xfield) method for crack propagation in brittle elastic materials. Comput. Methods Appl. Mech. Eng. 320, 396–420 (2017)ADSMathSciNetMATHCrossRef
29.
Zurück zum Zitat Ha, Y.D., Bobaru, F.: Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162, 229–244 (2010)MATHCrossRef Ha, Y.D., Bobaru, F.: Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162, 229–244 (2010)MATHCrossRef
30.
Zurück zum Zitat Ha, Y.D., Bobaru, F.: Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78, 1156–1168 (2011)CrossRef Ha, Y.D., Bobaru, F.: Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78, 1156–1168 (2011)CrossRef
31.
Zurück zum Zitat Hansen-Dörr, A.C., Dammaß, F., de Borst, R., Kästner, M.: Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 107004, (2020) Hansen-Dörr, A.C., Dammaß, F., de Borst, R., Kästner, M.: Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 107004, (2020)
32.
Zurück zum Zitat Hu, F., Nie, Y., Li, F., Liu, J., Gao, Y., Wang, W., Zhang, L.: Molecular dynamics simulation study of the fracture properties of polymer nanocomposites filled with grafted nanoparticles. Phys. Chem. Chem. Phys,. 21(21), 11320–11328 (2019)CrossRef Hu, F., Nie, Y., Li, F., Liu, J., Gao, Y., Wang, W., Zhang, L.: Molecular dynamics simulation study of the fracture properties of polymer nanocomposites filled with grafted nanoparticles. Phys. Chem. Chem. Phys,. 21(21), 11320–11328 (2019)CrossRef
33.
Zurück zum Zitat Indriyantho, B.R., Zreid, I., Kaliske, M.: A nonlocal softening plasticity based on microplane theory for concrete at finite strains. Comput. Struct. 241, 106333 (2020)CrossRef Indriyantho, B.R., Zreid, I., Kaliske, M.: A nonlocal softening plasticity based on microplane theory for concrete at finite strains. Comput. Struct. 241, 106333 (2020)CrossRef
34.
Zurück zum Zitat Kachanov, D.: Time of rupture process under creep conditions. Izvestia Akademii Nauk, USSR 8, 26–31 (1958) Kachanov, D.: Time of rupture process under creep conditions. Izvestia Akademii Nauk, USSR 8, 26–31 (1958)
35.
Zurück zum Zitat Kachanov, L.: Introduction to Continuum Damage Mechanics, vol. 10. Springer Science & Business Media, New York (1986)MATH Kachanov, L.: Introduction to Continuum Damage Mechanics, vol. 10. Springer Science & Business Media, New York (1986)MATH
36.
Zurück zum Zitat Khodabakhshi, P., Reddy, J.N., Srinivasa, A.: GraFEA: a graph-based finite element approach for the study of damage and fracture in brittle materials. Meccanica 51, 3129–3147 (2016)MathSciNetMATHCrossRef Khodabakhshi, P., Reddy, J.N., Srinivasa, A.: GraFEA: a graph-based finite element approach for the study of damage and fracture in brittle materials. Meccanica 51, 3129–3147 (2016)MathSciNetMATHCrossRef
37.
Zurück zum Zitat Khodabakhshi, P., Reddy, J.N., Srinivasa, A.: A nonlocal fracture criterion and its effect on the mesh dependency of grafea. Acta Mech. 230, 3593–3612 (2019)MathSciNetCrossRef Khodabakhshi, P., Reddy, J.N., Srinivasa, A.: A nonlocal fracture criterion and its effect on the mesh dependency of grafea. Acta Mech. 230, 3593–3612 (2019)MathSciNetCrossRef
38.
Zurück zum Zitat Lemaitre, J.: Continuum damage mechanics model for ductile fracture. ASME J. Eng. Mater. Technol. 107, 83–89 (1985)CrossRef Lemaitre, J.: Continuum damage mechanics model for ductile fracture. ASME J. Eng. Mater. Technol. 107, 83–89 (1985)CrossRef
39.
Zurück zum Zitat Lemaitre, J., Chaboche, J.L.: Aspect phénoménologique de la rupture par endommagement. J. Méc Appl 2(3), (1978) Lemaitre, J., Chaboche, J.L.: Aspect phénoménologique de la rupture par endommagement. J. Méc Appl 2(3), (1978)
40.
Zurück zum Zitat Li, S., Jin, Y., Huang, X., Zhai, L.: An extended bond-based peridynamic approach for analysis on fracture in brittle materials. Math. Probl. Eng. 2020, 1–12 (2020)MathSciNetCrossRef Li, S., Jin, Y., Huang, X., Zhai, L.: An extended bond-based peridynamic approach for analysis on fracture in brittle materials. Math. Probl. Eng. 2020, 1–12 (2020)MathSciNetCrossRef
41.
Zurück zum Zitat Liu, S., Fang, G., Liang, J., Lv, D.: A coupling model of XFEM/peridynamics for 2D dynamic crack propagation and branching problems. Theoret. Appl. Fract. Mech. 108, 102573 (2020)CrossRef Liu, S., Fang, G., Liang, J., Lv, D.: A coupling model of XFEM/peridynamics for 2D dynamic crack propagation and branching problems. Theoret. Appl. Fract. Mech. 108, 102573 (2020)CrossRef
42.
Zurück zum Zitat Madenci, E., Dorduncu, M., Barut, A., Phan, N.: A state-based peridynamic analysis in a finite element framework. Eng. Fract. Mech. 195, 104–128 (2018)CrossRef Madenci, E., Dorduncu, M., Barut, A., Phan, N.: A state-based peridynamic analysis in a finite element framework. Eng. Fract. Mech. 195, 104–128 (2018)CrossRef
43.
Zurück zum Zitat Malvar, L.J., Crawford, J.E.: Dynamic increase factors for concrete. Naval Facilities Engineering Service Center Port Hueneme CA (1998) Malvar, L.J., Crawford, J.E.: Dynamic increase factors for concrete. Naval Facilities Engineering Service Center Port Hueneme CA (1998)
44.
Zurück zum Zitat Marshal, J., Naghdi, P.M., Srinivasa, A.R.: A macroscopic theory of microcrack growth in brittle materials. Philos. Trans. R. Soc. Lond. A 335, 455–485 (1991)ADSMATHCrossRef Marshal, J., Naghdi, P.M., Srinivasa, A.R.: A macroscopic theory of microcrack growth in brittle materials. Philos. Trans. R. Soc. Lond. A 335, 455–485 (1991)ADSMATHCrossRef
45.
Zurück zum Zitat Mazars, J., Pijaudier-Cabot, G.: Continuum damage theory-application to concrete. J. Eng. Mech. 115, 345–365 (1989) Mazars, J., Pijaudier-Cabot, G.: Continuum damage theory-application to concrete. J. Eng. Mech. 115, 345–365 (1989)
46.
Zurück zum Zitat Miehe, C., Schaenzel, L., Ulmer, H.: Phase field modeling of fracture in multi-physics problems: part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput. Methods Appl. Mech. Eng. 294, 449–485 (2015)ADSMathSciNetMATHCrossRef Miehe, C., Schaenzel, L., Ulmer, H.: Phase field modeling of fracture in multi-physics problems: part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput. Methods Appl. Mech. Eng. 294, 449–485 (2015)ADSMathSciNetMATHCrossRef
47.
Zurück zum Zitat Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Meth. Eng. 83, 1273–1311 (2010)MathSciNetMATHCrossRef Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Meth. Eng. 83, 1273–1311 (2010)MathSciNetMATHCrossRef
48.
Zurück zum Zitat Mondal, S., Olsen-Kettle, L.M., Gross, L.: Regularization of continuum damage mechanics models for 3-d brittle materials using implicit gradient enhancement. Comput. Geotech. 122, 103505 (2020)CrossRef Mondal, S., Olsen-Kettle, L.M., Gross, L.: Regularization of continuum damage mechanics models for 3-d brittle materials using implicit gradient enhancement. Comput. Geotech. 122, 103505 (2020)CrossRef
50.
Zurück zum Zitat Němeček, J., Patzák, B., Rypl, D., Bittnar, Z.: Microplane models: Computational aspects and proposed parallel algorithm. Comput. Struct. 80(27–30), 2099–2108 (2002)CrossRef Němeček, J., Patzák, B., Rypl, D., Bittnar, Z.: Microplane models: Computational aspects and proposed parallel algorithm. Comput. Struct. 80(27–30), 2099–2108 (2002)CrossRef
51.
Zurück zum Zitat Ožbolt, J., Gambarelli, S.: Microplane model with relaxed kinematic constraint in the framework of micro polar Cosserat continuum. Eng. Fract. Mech. 199, 476–488 (2018)CrossRef Ožbolt, J., Gambarelli, S.: Microplane model with relaxed kinematic constraint in the framework of micro polar Cosserat continuum. Eng. Fract. Mech. 199, 476–488 (2018)CrossRef
52.
Zurück zum Zitat Peerlings, R.H., de Borst, R., Brekelman, W.A., Geers, M.G.: Gradient-enhanced damage modelling of concrete fracture. Mech. Cohes. Frict. Mater. 3, 323–342 (1998)CrossRef Peerlings, R.H., de Borst, R., Brekelman, W.A., Geers, M.G.: Gradient-enhanced damage modelling of concrete fracture. Mech. Cohes. Frict. Mater. 3, 323–342 (1998)CrossRef
53.
Zurück zum Zitat Pijaudier-Cabot, G., Bažant, Z.: Nonlocal damage theory. J. Eng. Mech. 113, 1512–1533 (1987)MATH Pijaudier-Cabot, G., Bažant, Z.: Nonlocal damage theory. J. Eng. Mech. 113, 1512–1533 (1987)MATH
54.
Zurück zum Zitat Rabczuk, T., Belytshcko, T.: Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int. J. Numer. Meth. Eng. 61, 2316–2343 (2004)MATHCrossRef Rabczuk, T., Belytshcko, T.: Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int. J. Numer. Meth. Eng. 61, 2316–2343 (2004)MATHCrossRef
55.
Zurück zum Zitat Sarah, K., Thamburaja, P., Srinivasa, A., Reddy, J.N.: Numerical simulations of damage and fracture in viscoelastic solids using a non-local fracture criterion. Mech. Adv. Mater. Struct. 27, 1085–1097 (2020)CrossRef Sarah, K., Thamburaja, P., Srinivasa, A., Reddy, J.N.: Numerical simulations of damage and fracture in viscoelastic solids using a non-local fracture criterion. Mech. Adv. Mater. Struct. 27, 1085–1097 (2020)CrossRef
56.
57.
Zurück zum Zitat Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)MathSciNetMATHCrossRef Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)MathSciNetMATHCrossRef
58.
Zurück zum Zitat Spatschek, R., Eidel, B.: Driving forces for interface kinetics and phase field models. Int. J. Solids Struct. 50(14–15), 2424–2436 (2013)CrossRef Spatschek, R., Eidel, B.: Driving forces for interface kinetics and phase field models. Int. J. Solids Struct. 50(14–15), 2424–2436 (2013)CrossRef
59.
Zurück zum Zitat Srinivasa, A., Reddy, J., Phan, N.: A discrete nonlocal damage mechanics approach. Mech. Adv. Mater. Struct. 80(27–30), 2099–2108 (2020) Srinivasa, A., Reddy, J., Phan, N.: A discrete nonlocal damage mechanics approach. Mech. Adv. Mater. Struct. 80(27–30), 2099–2108 (2020)
60.
Zurück zum Zitat Thamburaja, P., Sarah, K., Srinivasa, A., Reddy, J.N.: Fracture of viscoelastic materials: FEM implementation of a non-local & rate form-based finite-deformation constitutive theory. Comput. Methods Appl. Mech. Eng. 354, 871–903 (2019)ADSMathSciNetMATHCrossRef Thamburaja, P., Sarah, K., Srinivasa, A., Reddy, J.N.: Fracture of viscoelastic materials: FEM implementation of a non-local & rate form-based finite-deformation constitutive theory. Comput. Methods Appl. Mech. Eng. 354, 871–903 (2019)ADSMathSciNetMATHCrossRef
61.
Zurück zum Zitat Tupek, M.R., Rimoli, J.J., Radovitzky, R.: An approach for incorporating classical continuum damage models in state-based peridynamics. Comput. Methods Appl. Mech. Eng. 263, 20–26 (2013)ADSMathSciNetMATHCrossRef Tupek, M.R., Rimoli, J.J., Radovitzky, R.: An approach for incorporating classical continuum damage models in state-based peridynamics. Comput. Methods Appl. Mech. Eng. 263, 20–26 (2013)ADSMathSciNetMATHCrossRef
62.
Zurück zum Zitat Ulloa, J., Rodríguez, P., Samaniego, C., Samaniego, E.: Phase-field modeling of fracture for quasi-brittle materials. Underground Space 4, 10–21 (2019)CrossRef Ulloa, J., Rodríguez, P., Samaniego, C., Samaniego, E.: Phase-field modeling of fracture for quasi-brittle materials. Underground Space 4, 10–21 (2019)CrossRef
63.
Zurück zum Zitat Wang, Y., Waisman, H.: From diffuse damage to sharp cohesive cracks: a coupled XFEM framework for failure analysis of quasi-brittle materials. Comput. Methods Appl. Mech. Eng. 299, 57–89 (2016)ADSMathSciNetMATHCrossRef Wang, Y., Waisman, H.: From diffuse damage to sharp cohesive cracks: a coupled XFEM framework for failure analysis of quasi-brittle materials. Comput. Methods Appl. Mech. Eng. 299, 57–89 (2016)ADSMathSciNetMATHCrossRef
64.
Zurück zum Zitat Wu, C.T., Ren, B.: A stabilized non-ordinary state-based peridynamics for the nonlocal ductile material failure analysis in metal machining process. Comput. Methods Appl. Mech. Eng. 291, 197–215 (2015)ADSMathSciNetMATHCrossRef Wu, C.T., Ren, B.: A stabilized non-ordinary state-based peridynamics for the nonlocal ductile material failure analysis in metal machining process. Comput. Methods Appl. Mech. Eng. 291, 197–215 (2015)ADSMathSciNetMATHCrossRef
65.
Zurück zum Zitat Wu, J.Y.: A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J. Mech. Phys. Solids 103, 72–99 (2017)ADSMathSciNetCrossRef Wu, J.Y.: A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J. Mech. Phys. Solids 103, 72–99 (2017)ADSMathSciNetCrossRef
66.
Zurück zum Zitat Yaghoobi, A., Chorzepa, M.G.: Fracture analysis of fiber reinforced concrete structures in the micropolar peridynamic analysis framework. Eng. Fract. Mech. 169, 238–250 (2017)CrossRef Yaghoobi, A., Chorzepa, M.G.: Fracture analysis of fiber reinforced concrete structures in the micropolar peridynamic analysis framework. Eng. Fract. Mech. 169, 238–250 (2017)CrossRef
67.
Zurück zum Zitat Yaghoobi, A., Chorzepa, M.G.: Higher-order approximation to suppress the zero-energy mode in non-ordinary state-based peridynamics. Comput. Struct. 188, 63–79 (2017)CrossRef Yaghoobi, A., Chorzepa, M.G.: Higher-order approximation to suppress the zero-energy mode in non-ordinary state-based peridynamics. Comput. Struct. 188, 63–79 (2017)CrossRef
68.
Zurück zum Zitat Zafati, E., Richard, B.: Anisotropic continuum damage constitutive model to describe the cyclic response of quasi-brittle materials: the regularized unilateral effect. Int. J. Solids Struct. 162, 164–180 (2019)CrossRef Zafati, E., Richard, B.: Anisotropic continuum damage constitutive model to describe the cyclic response of quasi-brittle materials: the regularized unilateral effect. Int. J. Solids Struct. 162, 164–180 (2019)CrossRef
69.
Zurück zum Zitat Zheng, G., Shen, G., Xia, Y., Hu, P.: A bond-based peridynamic model considering effects of particle rotation and shear influence coefficient. Int. J. Numer. Meth. Eng. 121, 93–109 (2020)MathSciNetCrossRef Zheng, G., Shen, G., Xia, Y., Hu, P.: A bond-based peridynamic model considering effects of particle rotation and shear influence coefficient. Int. J. Numer. Meth. Eng. 121, 93–109 (2020)MathSciNetCrossRef
70.
Zurück zum Zitat Zreid, I., Kaliske, M.: Regularization of microplane damage models using an implicit gradient enhancement. Int. J. Solids Struct. 51, 3480–3489 (2014)CrossRef Zreid, I., Kaliske, M.: Regularization of microplane damage models using an implicit gradient enhancement. Int. J. Solids Struct. 51, 3480–3489 (2014)CrossRef
Metadaten
Titel
Multiple cracking model in a 3D GraFEA framework
verfasst von
A. R. Srinivasa
H. Y. Shin
P. Thamburaja
J. N. Reddy
Publikationsdatum
05.03.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Continuum Mechanics and Thermodynamics / Ausgabe 4/2021
Print ISSN: 0935-1175
Elektronische ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-021-00987-4

Weitere Artikel der Ausgabe 4/2021

Continuum Mechanics and Thermodynamics 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.