Skip to main content

2018 | OriginalPaper | Buchkapitel

5. Multiple Iterative Seeding of Surface Plasmon Enhanced Cobalt-Iron Oxide Nanokernels for Cancer Theranostics

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cancer is the second leading disease which causes major mortality and morbidity worldwide [1]. In cancer therapy, it is crucial to increase the drug specificity and drug efficacy to minimize or completely eradicate significant side effects on patients [2]. Cancer nanotherapeutics overcome many serious drawbacks of chemotherapy such as nonspecific targeting, lower efficacy, insolubility of drug moieties in water, and oral bioavailability [3]. Accordingly, Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are exploited as an important nanomaterial for cancer detection as well as therapeutics [4]. Such magnetic nanoparticles (NPs) gained its momentum because of their single-domain ordering along with their large surface-to-volume ratio (providing large surface area for attachment of biological entities). Hence, this property makes them a suitable candidate as a contrast agent, drug-carrying cargo, and hyperthermal agent [5]. The doping of SPIONs with cobalt ions further enhances their magnetic property, thus forming CoFe2O4 nanokernels (Nks). These spinel ferrite Nks possess ca. 20–30 times higher magneto-crystalline anisotropy as compared to SPIONs; this increases the performance of materials for biomedical applications [6–8]. Specifically, these Nks are mostly used in biomedicine than any other spinel structure because of their enhanced magnetic property and large anisotropy [9]. The increased superparamagnetism makes them an efficient system for theranostics [10–12].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jemal, A., Bray, F. & Ferlay, J. Global Cancer Statistics: 2011. CA Cancer J Clin 49, 1,33–64 (1999).CrossRef Jemal, A., Bray, F. & Ferlay, J. Global Cancer Statistics: 2011. CA Cancer J Clin 49, 1,33–64 (1999).CrossRef
2.
Zurück zum Zitat Lévy, M. et al. Magnetically induced hyperthermia: size-dependent heating power of γ-Fe2O3 nanoparticles. J. Phys. Condens. Matter 20, 204133 (2008).CrossRef Lévy, M. et al. Magnetically induced hyperthermia: size-dependent heating power of γ-Fe2O3 nanoparticles. J. Phys. Condens. Matter 20, 204133 (2008).CrossRef
3.
Zurück zum Zitat Cho, K., Wang, X., Nie, S., Chen, Z. G. & Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14, 1310–6 (2008).CrossRef Cho, K., Wang, X., Nie, S., Chen, Z. G. & Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14, 1310–6 (2008).CrossRef
4.
Zurück zum Zitat Shah, J. et al. Photoacoustic imaging and temperature measurement for photothermal cancer therapy. J. Biomed. Opt. 13, 34024 (2008).CrossRef Shah, J. et al. Photoacoustic imaging and temperature measurement for photothermal cancer therapy. J. Biomed. Opt. 13, 34024 (2008).CrossRef
5.
Zurück zum Zitat Zhang, L., Dong, W.F. & Sun, H.B. Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. Nanoscale 5, 7664–84 (2013).CrossRef Zhang, L., Dong, W.F. & Sun, H.B. Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. Nanoscale 5, 7664–84 (2013).CrossRef
6.
Zurück zum Zitat Beji, Z. et al. Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on endothelial cells. Chem. Mater. 22, 5420–5429 (2010).CrossRef Beji, Z. et al. Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on endothelial cells. Chem. Mater. 22, 5420–5429 (2010).CrossRef
7.
Zurück zum Zitat Yang, H. et al. Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials 31, 3667–3673 (2010).CrossRef Yang, H. et al. Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials 31, 3667–3673 (2010).CrossRef
8.
Zurück zum Zitat Giri, J. et al. Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe1-xBxFe2O4, B=Mn,Co(x=0-1)] for biomedical applications. J. Magn. Magn. Mater. 320, 724–730 (2008).CrossRef Giri, J. et al. Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe1-xBxFe2O4, B=Mn,Co(x=0-1)] for biomedical applications. J. Magn. Magn. Mater. 320, 724–730 (2008).CrossRef
9.
Zurück zum Zitat Tung, L. D. et al. Magnetic properties of ultrafine cobalt ferrite particles. J. Appl. Phys. 93, 7486–7488 (2003).CrossRef Tung, L. D. et al. Magnetic properties of ultrafine cobalt ferrite particles. J. Appl. Phys. 93, 7486–7488 (2003).CrossRef
10.
Zurück zum Zitat Ekreem, N. B., Olabi, A. G., Prescott, T., Rafferty, A. & Hashmi, M. S. J. An overview of magnetostriction, its use and methods to measure these properties. J. Mater. Process. Technol. 191, 96–101 (2007).CrossRef Ekreem, N. B., Olabi, A. G., Prescott, T., Rafferty, A. & Hashmi, M. S. J. An overview of magnetostriction, its use and methods to measure these properties. J. Mater. Process. Technol. 191, 96–101 (2007).CrossRef
11.
Zurück zum Zitat Baldi, G. et al. Synthesis and Coating of Cobalt Ferrite Nanoparticles: A First Step toward the Obtainment of New Magnetic Nanocarriers. Langmuir 23, 4026–4028 (2007).CrossRef Baldi, G. et al. Synthesis and Coating of Cobalt Ferrite Nanoparticles: A First Step toward the Obtainment of New Magnetic Nanocarriers. Langmuir 23, 4026–4028 (2007).CrossRef
12.
Zurück zum Zitat Pita, M. et al. Synthesis of cobalt ferrite core/metallic shell nanoparticles for the development of a specific PNA/DNA biosensor. J. Colloid Interface Sci. 321, 484–492 (2008).CrossRef Pita, M. et al. Synthesis of cobalt ferrite core/metallic shell nanoparticles for the development of a specific PNA/DNA biosensor. J. Colloid Interface Sci. 321, 484–492 (2008).CrossRef
13.
Zurück zum Zitat Goon, I. Y. et al. Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: Systematic control using polyethyleneimine. Chem. Mater. 21, 673–681 (2009).CrossRef Goon, I. Y. et al. Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: Systematic control using polyethyleneimine. Chem. Mater. 21, 673–681 (2009).CrossRef
14.
Zurück zum Zitat Zhang, Y. et al. Facile one-step synthesis of plasmonic/magnetic core/shell nanostructures and their multifunctionality. J. Mater. Chem. 22, 10779 (2012).CrossRef Zhang, Y. et al. Facile one-step synthesis of plasmonic/magnetic core/shell nanostructures and their multifunctionality. J. Mater. Chem. 22, 10779 (2012).CrossRef
15.
Zurück zum Zitat Wang, L. et al. Monodispersed Core-shell Fe3O4@Au Nanoparticles. 21593–21601 (2005). Wang, L. et al. Monodispersed Core-shell Fe3O4@Au Nanoparticles. 21593–21601 (2005).
16.
Zurück zum Zitat Daniel, M. C. M. & Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size Related Properties and Applications toward Biology, Catalysis and Nanotechnology,. Chem. Rev. 104, 293–346 (2004).CrossRef Daniel, M. C. M. & Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size Related Properties and Applications toward Biology, Catalysis and Nanotechnology,. Chem. Rev. 104, 293–346 (2004).CrossRef
17.
Zurück zum Zitat Xia, Y., Gates, B., Yin, Y. & Lu, Y. Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 12, 693–713 (2000).CrossRef Xia, Y., Gates, B., Yin, Y. & Lu, Y. Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 12, 693–713 (2000).CrossRef
18.
Zurück zum Zitat Wang, L. et al. Iron oxide-gold core-shell nanoparticles and thin film assembly. J. Mater. Chem. 15, 1821–1832 (2005).CrossRef Wang, L. et al. Iron oxide-gold core-shell nanoparticles and thin film assembly. J. Mater. Chem. 15, 1821–1832 (2005).CrossRef
19.
Zurück zum Zitat Hormes, J., Modrow, H., Bönnemann, H. & Kumar, C. S. S. R. The influence of various coatings on the electronic, magnetic, and geometric properties of cobalt nanoparticles (invited). J. Appl. Phys. 97, (2005). Hormes, J., Modrow, H., Bönnemann, H. & Kumar, C. S. S. R. The influence of various coatings on the electronic, magnetic, and geometric properties of cobalt nanoparticles (invited). J. Appl. Phys. 97, (2005).
20.
Zurück zum Zitat Alonso-Cristobal, P., Laurenti, M., Lopez-Cabarcos, E. & Rubio-Retama, J. Efficient synthesis of core@shell Fe3O4@Au nanoparticles. Mater. Res. Express 2, 75002 (2015).CrossRef Alonso-Cristobal, P., Laurenti, M., Lopez-Cabarcos, E. & Rubio-Retama, J. Efficient synthesis of core@shell Fe3O4@Au nanoparticles. Mater. Res. Express 2, 75002 (2015).CrossRef
21.
Zurück zum Zitat Gallo, J., García, I., Padro, D., Arnáiz, B. & Penadés, S. Water-soluble magnetic glyconanoparticles based on metal-doped ferrites coated with gold: Synthesis and characterization. J. Mater. Chem. 20, 10010 (2010).CrossRef Gallo, J., García, I., Padro, D., Arnáiz, B. & Penadés, S. Water-soluble magnetic glyconanoparticles based on metal-doped ferrites coated with gold: Synthesis and characterization. J. Mater. Chem. 20, 10010 (2010).CrossRef
22.
Zurück zum Zitat Lyon, J. L., Fleming, D. A., Stone, M. B., Schiffer, P. & Williams, M. E. Synthesis of Fe oxide Core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett. 4, 719–723 (2004).CrossRef Lyon, J. L., Fleming, D. A., Stone, M. B., Schiffer, P. & Williams, M. E. Synthesis of Fe oxide Core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett. 4, 719–723 (2004).CrossRef
23.
Zurück zum Zitat Zhang, Q. et al. Tailored synthesis of superparamagnetic gold nanoshells with tunable optical properties. Adv. Mater. 22, 1905–1909 (2010).CrossRef Zhang, Q. et al. Tailored synthesis of superparamagnetic gold nanoshells with tunable optical properties. Adv. Mater. 22, 1905–1909 (2010).CrossRef
24.
Zurück zum Zitat Caruntu, D., Cushing, B. L., Caruntu, G. & O’Connor, C. J. Attachment of gold nanograins onto colloidal magnetite nanocrystals. Chem. Mater. 17, 3398–3402 (2005).CrossRef Caruntu, D., Cushing, B. L., Caruntu, G. & O’Connor, C. J. Attachment of gold nanograins onto colloidal magnetite nanocrystals. Chem. Mater. 17, 3398–3402 (2005).CrossRef
25.
Zurück zum Zitat Oliva, B. L., Pradhan, A., Caruntu, D., O’Connor, C. J. & Tarr, M. a. Formation of gold-coated magnetic nanoparticles using TiO2 as a bridging material. J. Mater. Res. 21, 1312–1316 (2006).CrossRef Oliva, B. L., Pradhan, A., Caruntu, D., O’Connor, C. J. & Tarr, M. a. Formation of gold-coated magnetic nanoparticles using TiO2 as a bridging material. J. Mater. Res. 21, 1312–1316 (2006).CrossRef
26.
Zurück zum Zitat Banchelli, M. et al. Magnetic nanoparticle clusters as actuators of ssDNA release. Phys. Chem. Chem. Phys. 16, 10023 (2014).CrossRef Banchelli, M. et al. Magnetic nanoparticle clusters as actuators of ssDNA release. Phys. Chem. Chem. Phys. 16, 10023 (2014).CrossRef
27.
Zurück zum Zitat Kang, Y. M. et al. In vivo efficacy of an intratumorally injected in situ-forming doxorubicin/poly(ethylene glycol)-b-polycaprolactone diblock copolymer. Biomaterials 32, 4556–4564 (2011).CrossRef Kang, Y. M. et al. In vivo efficacy of an intratumorally injected in situ-forming doxorubicin/poly(ethylene glycol)-b-polycaprolactone diblock copolymer. Biomaterials 32, 4556–4564 (2011).CrossRef
28.
Zurück zum Zitat Octavia, Y. et al. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. J. Mol. Cell. Cardiol. 52, 1213–1225 (2012).CrossRef Octavia, Y. et al. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. J. Mol. Cell. Cardiol. 52, 1213–1225 (2012).CrossRef
29.
Zurück zum Zitat Molyneux, G. et al. Haemotoxicity of busulphan, doxorubicin, cisplatin and cyclophosphamide in the female BALB/c mouse using a brief regimen of drug administration. Cell Biol. Toxicol. 27, 13–40 (2011).CrossRef Molyneux, G. et al. Haemotoxicity of busulphan, doxorubicin, cisplatin and cyclophosphamide in the female BALB/c mouse using a brief regimen of drug administration. Cell Biol. Toxicol. 27, 13–40 (2011).CrossRef
30.
Zurück zum Zitat Zwicke, G. L., Mansoori, G. A. & Jeffery, C. J. Targeting of Cancer Nanotherapeutics. Nano Rev. 1, 1–11 (2012). Zwicke, G. L., Mansoori, G. A. & Jeffery, C. J. Targeting of Cancer Nanotherapeutics. Nano Rev. 1, 1–11 (2012).
31.
Zurück zum Zitat Torchilin, V. P. Nanoparticulate pharmaceutical drug delivery systems (NDDSs) are widely used in pharmaceutical research and in clinical settings to enhance the effectiveness of diagnostic agents and drugs, including anticancer, antimicrobial and antiviral drugs. Nat. Publ. Gr. 13, (2014). Torchilin, V. P. Nanoparticulate pharmaceutical drug delivery systems (NDDSs) are widely used in pharmaceutical research and in clinical settings to enhance the effectiveness of diagnostic agents and drugs, including anticancer, antimicrobial and antiviral drugs. Nat. Publ. Gr. 13, (2014).
32.
Zurück zum Zitat Dobson, J. Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55–60 (2006).CrossRef Dobson, J. Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55–60 (2006).CrossRef
33.
Zurück zum Zitat Issels, R. D. Hyperthermia adds to chemotherapy. (2008). doi:https://doi.org/10.1016/j.ejca.2008.07.038 Issels, R. D. Hyperthermia adds to chemotherapy. (2008). doi:https://​doi.​org/​10.​1016/​j.​ejca.​2008.​07.​038
34.
Zurück zum Zitat Bohara, R. a., Thorat, N. D., Yadav, H. M. & Pawar, S. H. One-step synthesis of uniform and biocompatible amine functionalized cobalt ferrite nanoparticles: a potential carrier for biomedical applications. New J. Chem. 38, 2979 (2014).CrossRef Bohara, R. a., Thorat, N. D., Yadav, H. M. & Pawar, S. H. One-step synthesis of uniform and biocompatible amine functionalized cobalt ferrite nanoparticles: a potential carrier for biomedical applications. New J. Chem. 38, 2979 (2014).CrossRef
35.
Zurück zum Zitat Ma, L. L. et al. Growth of textured thin Au coatings on iron oxide nanoparticles with near infrared absorbance. Nanotechnology 24, 25606 (2013).CrossRef Ma, L. L. et al. Growth of textured thin Au coatings on iron oxide nanoparticles with near infrared absorbance. Nanotechnology 24, 25606 (2013).CrossRef
36.
Zurück zum Zitat Jain, P. K., Xiao, Y., Walsworth, R. & Cohen, A. E. Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals. Nano Lett. 9, 1644–1650 (2009).CrossRef Jain, P. K., Xiao, Y., Walsworth, R. & Cohen, A. E. Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals. Nano Lett. 9, 1644–1650 (2009).CrossRef
37.
Zurück zum Zitat Carlà, F. et al. Electrochemical characterization of core@shell CoFe2O4/Au composite. J. Nanoparticle Res. 15, 1813 (2013).CrossRef Carlà, F. et al. Electrochemical characterization of core@shell CoFe2O4/Au composite. J. Nanoparticle Res. 15, 1813 (2013).CrossRef
38.
Zurück zum Zitat Kong, S. D. et al. Magnetically Vectored Nanocapsules for Tumor Penetration and Remotely Switchable On-Demand Drug Release. Nano Lett. 10, 5088–5092 (2010).CrossRef Kong, S. D. et al. Magnetically Vectored Nanocapsules for Tumor Penetration and Remotely Switchable On-Demand Drug Release. Nano Lett. 10, 5088–5092 (2010).CrossRef
39.
Zurück zum Zitat Li, P., Jiang, E. Y. & Bai, H. L. Fabrication of ultrathin epitaxial γ-Fe2O3 films by reactive sputtering. J. Phys. D. Appl. Phys. 44, 75003 (2011).CrossRef Li, P., Jiang, E. Y. & Bai, H. L. Fabrication of ultrathin epitaxial γ-Fe2O3 films by reactive sputtering. J. Phys. D. Appl. Phys. 44, 75003 (2011).CrossRef
40.
Zurück zum Zitat Barbieri, A., Weiss, W., Van Hove, M. A. & Somorjai, G. A. Magnetite Fe3O4(111): surface structure by LEED crystallography and energetics. Surf. Sci. 302, 259–279 (1994).CrossRef Barbieri, A., Weiss, W., Van Hove, M. A. & Somorjai, G. A. Magnetite Fe3O4(111): surface structure by LEED crystallography and energetics. Surf. Sci. 302, 259–279 (1994).CrossRef
41.
Zurück zum Zitat Mosivand, S. & Kazeminezhad, I. Synthesis of electrocrystallized cobalt ferrite nanopowders by tuning the cobalt salt concentration. RSC Adv. 5, 14796–14803 (2015).CrossRef Mosivand, S. & Kazeminezhad, I. Synthesis of electrocrystallized cobalt ferrite nanopowders by tuning the cobalt salt concentration. RSC Adv. 5, 14796–14803 (2015).CrossRef
42.
Zurück zum Zitat Shi, Y. et al. Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. Sci. Rep. 3, 1839 (2013).CrossRef Shi, Y. et al. Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. Sci. Rep. 3, 1839 (2013).CrossRef
43.
Zurück zum Zitat Liu, B. et al. Synthesis of patterned nanogold and mesoporous CoFe2O4 nanoparticle assemblies and their application in clinical immunoassays. Nanoscale 3, 2220–2226 (2011).CrossRef Liu, B. et al. Synthesis of patterned nanogold and mesoporous CoFe2O4 nanoparticle assemblies and their application in clinical immunoassays. Nanoscale 3, 2220–2226 (2011).CrossRef
44.
Zurück zum Zitat Xu, Z., Hou, Y. & Sun, S. Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties. J. Am. Chem. Soc 129, 8698–8699 (2007).CrossRef Xu, Z., Hou, Y. & Sun, S. Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties. J. Am. Chem. Soc 129, 8698–8699 (2007).CrossRef
45.
Zurück zum Zitat Shi, X., Thomas, T. P., Myc, L. A, Kotlyar, A. & Baker, J. R. Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys. Chem. Chem. Phys. 9, 5712–5720 (2007).CrossRef Shi, X., Thomas, T. P., Myc, L. A, Kotlyar, A. & Baker, J. R. Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys. Chem. Chem. Phys. 9, 5712–5720 (2007).CrossRef
46.
Zurück zum Zitat Baruah, B. & Kiambuthi, M. Facile synthesis of silver and bimetallic silver–gold nanoparticles and their applications in surface-enhanced Raman scattering. RSC Adv. 4, 64860–64870 (2014).CrossRef Baruah, B. & Kiambuthi, M. Facile synthesis of silver and bimetallic silver–gold nanoparticles and their applications in surface-enhanced Raman scattering. RSC Adv. 4, 64860–64870 (2014).CrossRef
47.
Zurück zum Zitat Pandey, S. et al. Folic acid mediated synaphic delivery of doxorubicin using biogenic gold nanoparticles anchored to biological linkers. J. Mater. Chem. B 1, 1361 (2013).CrossRef Pandey, S. et al. Folic acid mediated synaphic delivery of doxorubicin using biogenic gold nanoparticles anchored to biological linkers. J. Mater. Chem. B 1, 1361 (2013).CrossRef
48.
Zurück zum Zitat Gordel, M. et al. Post-synthesis reshaping of gold nanorods using a femtosecond laser. Phys. Chem. Chem. Phys. 16, 71–8 (2014).CrossRef Gordel, M. et al. Post-synthesis reshaping of gold nanorods using a femtosecond laser. Phys. Chem. Chem. Phys. 16, 71–8 (2014).CrossRef
49.
Zurück zum Zitat Rai, A., Prabhune, A. & Perry, C. C. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J. Mater. Chem. 20, 6789 (2010).CrossRef Rai, A., Prabhune, A. & Perry, C. C. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J. Mater. Chem. 20, 6789 (2010).CrossRef
50.
Zurück zum Zitat Wortmann, L. et al. Bioconjugated iron oxide nanocubes: synthesis, functionalization, and vectorization. ACS Appl. Mater. Interfaces 6, 16631–16642 (2014).CrossRef Wortmann, L. et al. Bioconjugated iron oxide nanocubes: synthesis, functionalization, and vectorization. ACS Appl. Mater. Interfaces 6, 16631–16642 (2014).CrossRef
51.
Zurück zum Zitat Mewada, A., Pandey, S., Thakur, M., Jadhav, D. & Sharon, M. Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging. J. Mater. Chem. B 2, 698–705 (2014).CrossRef Mewada, A., Pandey, S., Thakur, M., Jadhav, D. & Sharon, M. Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging. J. Mater. Chem. B 2, 698–705 (2014).CrossRef
52.
Zurück zum Zitat Mellman, I. Endocytosis and Molecular Sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625 (1996).CrossRef Mellman, I. Endocytosis and Molecular Sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625 (1996).CrossRef
53.
Zurück zum Zitat Chen, H. et al. Drug loaded multilayered gold nanorods for combined photothermal and chemotherapy. Biomater. Sci. 2, 996 (2014).CrossRef Chen, H. et al. Drug loaded multilayered gold nanorods for combined photothermal and chemotherapy. Biomater. Sci. 2, 996 (2014).CrossRef
54.
Zurück zum Zitat Wang, X. et al. Folate receptor-targeted aggregation-enhanced near-IR emitting silica nanoprobe for one-photon in vivo and two-photon ex vivo fluorescence bioimaging. Bioconjug. Chem. 22, 1438–1450 (2011).CrossRef Wang, X. et al. Folate receptor-targeted aggregation-enhanced near-IR emitting silica nanoprobe for one-photon in vivo and two-photon ex vivo fluorescence bioimaging. Bioconjug. Chem. 22, 1438–1450 (2011).CrossRef
55.
Zurück zum Zitat Sharon, M. Surface Orchestration of Gold Nanoparticles Using Cysteamine as Linker and Folate as Navigating Molecule for Synaphic Delivery of Doxorubicin. J. Nanomedicine Res. 1, (2014). Sharon, M. Surface Orchestration of Gold Nanoparticles Using Cysteamine as Linker and Folate as Navigating Molecule for Synaphic Delivery of Doxorubicin. J. Nanomedicine Res. 1, (2014).
56.
Zurück zum Zitat Sandhu, K. K., McIntosh, C. M., Simard, J. M., Smith, S. W. & Rotello, V. M. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug. Chem. 13, 3–6 (2002).CrossRef Sandhu, K. K., McIntosh, C. M., Simard, J. M., Smith, S. W. & Rotello, V. M. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug. Chem. 13, 3–6 (2002).CrossRef
57.
Zurück zum Zitat Chompoosor, A., Han, G. & Rotello, V. M. Charge dependence of ligand release and monolayer stability of gold nanoparticles by biogenic thiols. Bioconjug. Chem. 19, 1342–1345 (2008).CrossRef Chompoosor, A., Han, G. & Rotello, V. M. Charge dependence of ligand release and monolayer stability of gold nanoparticles by biogenic thiols. Bioconjug. Chem. 19, 1342–1345 (2008).CrossRef
58.
Zurück zum Zitat Rosi, N. L. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science 312, 1027–1030 (2006).CrossRef Rosi, N. L. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science 312, 1027–1030 (2006).CrossRef
59.
Zurück zum Zitat Denard, B., Lee, C. & Ye, J. Doxorubicin blocks proliferation of cancer cells through proteolytic activation of CREB3L1. Elife 2012, 1–14 (2012). Denard, B., Lee, C. & Ye, J. Doxorubicin blocks proliferation of cancer cells through proteolytic activation of CREB3L1. Elife 2012, 1–14 (2012).
60.
Zurück zum Zitat Xie, M. et al. Expression of folate receptors in nasopharyngeal and laryngeal carcinoma and folate receptor-mediated endocytosis by molecular targeted nanomedicine. Int. J. Nanomedicine 8, 2443–2451 (2013).CrossRef Xie, M. et al. Expression of folate receptors in nasopharyngeal and laryngeal carcinoma and folate receptor-mediated endocytosis by molecular targeted nanomedicine. Int. J. Nanomedicine 8, 2443–2451 (2013).CrossRef
61.
Zurück zum Zitat Yoo, H. S., Lee, K. H., Oh, J. E. & Park, T. G. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J. Control. Release 68, 419–431 (2000).CrossRef Yoo, H. S., Lee, K. H., Oh, J. E. & Park, T. G. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J. Control. Release 68, 419–431 (2000).CrossRef
62.
Zurück zum Zitat Estrella, V. et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 73, 1524–1535 (2013).CrossRef Estrella, V. et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 73, 1524–1535 (2013).CrossRef
63.
Zurück zum Zitat Som, A., Bloch, S., Ippolito, J. E. & Achilefu, S. Acidic extracellular pH of tumors induces octamer-binding transcription factor 4 expression in murine fibroblasts in vitro and in vivo. Sci. Rep. 6, 27803 (2016).CrossRef Som, A., Bloch, S., Ippolito, J. E. & Achilefu, S. Acidic extracellular pH of tumors induces octamer-binding transcription factor 4 expression in murine fibroblasts in vitro and in vivo. Sci. Rep. 6, 27803 (2016).CrossRef
64.
Zurück zum Zitat Gurav, D. D., Kulkarni, A. S., Khan, A. & Shinde, V. S. pH-responsive targeted and controlled doxorubicin delivery using hyaluronic acid nanocarriers. Colloids Surfaces B Biointerfaces 143, 352–358 (2016).CrossRef Gurav, D. D., Kulkarni, A. S., Khan, A. & Shinde, V. S. pH-responsive targeted and controlled doxorubicin delivery using hyaluronic acid nanocarriers. Colloids Surfaces B Biointerfaces 143, 352–358 (2016).CrossRef
65.
Zurück zum Zitat Rohrer, M., Bauer, H., Mintorovitch, J., Requardt, M. & Weinmann, H.J. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 40, 715–724 (2005).CrossRef Rohrer, M., Bauer, H., Mintorovitch, J., Requardt, M. & Weinmann, H.J. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 40, 715–724 (2005).CrossRef
66.
Zurück zum Zitat Reimer, P. & Balzer, T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. European Radiology 13, (2003). Reimer, P. & Balzer, T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. European Radiology 13, (2003).
67.
Zurück zum Zitat Malyutin, A. G. et al. Virus like Nanoparticles with Maghemite Cores Allow for Enhanced MRI Contrast Agents. Chem. Mater. 27, 327–335 (2015).CrossRef Malyutin, A. G. et al. Virus like Nanoparticles with Maghemite Cores Allow for Enhanced MRI Contrast Agents. Chem. Mater. 27, 327–335 (2015).CrossRef
68.
Zurück zum Zitat Kodiha, M. et al. Gold nanoparticles induce nuclear damage in breast cancer cells, which is further amplified by hyperthermia. Cell. Mol. Life Sci. 71, 4259–73 (2014).CrossRef Kodiha, M. et al. Gold nanoparticles induce nuclear damage in breast cancer cells, which is further amplified by hyperthermia. Cell. Mol. Life Sci. 71, 4259–73 (2014).CrossRef
69.
Zurück zum Zitat Cho, E. C., Xie, J., Wurm, P. A. & Xia, Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 9, 1080–1084 (2009).CrossRef Cho, E. C., Xie, J., Wurm, P. A. & Xia, Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 9, 1080–1084 (2009).CrossRef
70.
Zurück zum Zitat Trujillo-Romero, C. J., Garcia-Jimeno, S., Vera, A., Leija, L. & Estelrich, J. Using Nanoparticles for Enhancing the Focusing Heating Effect of an External Waveguide Applicator for Oncology Hyper-Thermia: Evaluation in Muscle and Tumor Phantoms. Prog. Electromagn. Res. 121, 343–363 (2011).CrossRef Trujillo-Romero, C. J., Garcia-Jimeno, S., Vera, A., Leija, L. & Estelrich, J. Using Nanoparticles for Enhancing the Focusing Heating Effect of an External Waveguide Applicator for Oncology Hyper-Thermia: Evaluation in Muscle and Tumor Phantoms. Prog. Electromagn. Res. 121, 343–363 (2011).CrossRef
71.
Zurück zum Zitat Kim, D. K. et al. Energy absorption of superparamagnetic iron oxide nanoparticles by microwave irradiation. J. Appl. Phys. 97, 10J510–10J510-3 (2005). Kim, D. K. et al. Energy absorption of superparamagnetic iron oxide nanoparticles by microwave irradiation. J. Appl. Phys. 97, 10J510–10J510-3 (2005).
72.
Zurück zum Zitat Mohammad, F., Balaji, G., Weber, A., Uppu, R. M. & Kumar, C. S. S. R. Influence of Gold Nanoshell on Hyperthermia of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs). J. Phys. Chem. C. Nanomater. Interfaces 114, 19194–19201 (2010). Mohammad, F., Balaji, G., Weber, A., Uppu, R. M. & Kumar, C. S. S. R. Influence of Gold Nanoshell on Hyperthermia of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs). J. Phys. Chem. C. Nanomater. Interfaces 114, 19194–19201 (2010).
73.
Zurück zum Zitat Holzwarth, A., Lou, J., Hatton, T. A. & Laibinis, P. E. Enhanced Microwave Heating of Nonpolar Solvents by Dispersed Magnetic Nanoparticles. Ind. Eng. Chem. Res. 37, 2701–2706 (1998).CrossRef Holzwarth, A., Lou, J., Hatton, T. A. & Laibinis, P. E. Enhanced Microwave Heating of Nonpolar Solvents by Dispersed Magnetic Nanoparticles. Ind. Eng. Chem. Res. 37, 2701–2706 (1998).CrossRef
75.
Zurück zum Zitat Urano, M., Kuroda, M. & Nishimura, Y. For the clinical application of thermochemotherapy given at mild temperatures. Int. J. Hyperth. 15, 79–107 (1999).CrossRef Urano, M., Kuroda, M. & Nishimura, Y. For the clinical application of thermochemotherapy given at mild temperatures. Int. J. Hyperth. 15, 79–107 (1999).CrossRef
76.
Zurück zum Zitat Ramachandra Kurup Sasikala, A. et al. Multifunctional Nanocarpets for Cancer Theranostics: Remotely Controlled Graphene Nanoheaters for Thermo-Chemosensitisation and Magnetic Resonance Imaging. Sci. Rep. 6, 20543 (2016).CrossRef Ramachandra Kurup Sasikala, A. et al. Multifunctional Nanocarpets for Cancer Theranostics: Remotely Controlled Graphene Nanoheaters for Thermo-Chemosensitisation and Magnetic Resonance Imaging. Sci. Rep. 6, 20543 (2016).CrossRef
Metadaten
Titel
Multiple Iterative Seeding of Surface Plasmon Enhanced Cobalt-Iron Oxide Nanokernels for Cancer Theranostics
verfasst von
Ravichandran Manisekaran
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-67609-8_5

Neuer Inhalt